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Introduction

Pseudohypoparathyroidism (PHP) is a group of rare, related, 
highly heterogeneous disorders, which are characterized 
by end-organ resistance to parathyroid hormone (PTH) 
action. PHP and related disorders are caused by the genetic 
and/or epigenetic changes leading to down-regulation of a 
cyclic adenosine monophosphate (cAMP) generator, mostly 
related to the GNAS gene (1,2,3,4,5). GNAS is an imprinted 
gene which gives rise to multiple gene products, including 
transcripts that encode the α-subunit of the stimulatory 
guanine nucleotide-binding protein (G protein) (Gsα), extra-
large Gsα (XLαs), and neuroendocrine secretory protein 55 

(NESP55), as well as to noncoding A/B (also referred to as 
1A) and antisense transcripts (GNAS-AS1).

Gsα is a ubiquitously expressed signaling protein having a 
role in the actions of many hormones and other endogenous 
molecules through the generation of intracellular cAMP 
and encoded by GNAS exons 1-13 (1,2,3,4,5). Other GNAS 
transcripts NESP55, XLαs, and A/B, with the exception of 
GNAS-AS1 consists of distinct exons, and all contain their 
own, differentially methylated, unique first exons (DMRs), 
which are spliced onto exon 2 of GNAS. So all of these 
transcripts, from exon 2 on, are identical in sequence to 
Gsα (6,7,8,9,10,11). Thus a structural or epigenetic change 
in other GNAS trancripts also affects Gsα function. 
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Expression patterns of Gsα and other GNAS transcripts 
in different tissues determine the disease phenotype 
when GNAS mutations are present. The Gsα transcript is 
biallelically expressed in most tissues. However, silenced 
paternal Gsα expression in some tissues, including proximal 
renal tubules, neonatal brown adipose tissue, thyroid, 
gonads, the paraventricular nucleus of the hypothalamus and 
pituitary can cause hormone resistance in cases of maternal 
mutations (12,13,14,15,16,17,18). Thus, mutations on 
maternal alleles cause hormone resistance i.e. PHP.

Historically PHP is the first hormone-resistance syndrome, 
described by Albright et al (19) and characterized by 
hypocalcemia, hyperphosphatemia, and elevated PTH levels 
and Albright hereditary osteodystrophy (AHO). Clinical 
features of AHO are obesity, round face, short stature, 
brachydactyly (BD), subcutaneous ossifications and mental 
retardation. AHO features occur regardless of the parental 
origin of the Gsα mutation, because AHO features are thought 
to result from Gsα haploinsufficiency, primarily in those 
tissues where Gsα expression is biallelic. Consistent with 
this interpretation, changes in growth plate chondrocytes 
and subcutaneous ossifications occur, regardless of whether 
the disrupted allele is inherited from the mother or the father 
(20,21). Thus, AHO features are seen both in patients with 
maternal mutations i.e. PHP and paternal mutations, e.g. 
pseudo-PHP (pPHP), which is characterized by absence of 
PTH and/or hormonal resistance (Table 1). However, recent 
data from human studies have revealed that Gsα imprinting 
may be present in some features of AHO, that is obesity and 
cognitive impairment occur predominantly in patients with 
PHP (22,23).

Pseudohypoparathyroidism Classification

PHP is subdivided into type I and type II. Type I is defined 
as the failure to increase both urinary cAMP and urinary 
phosphate excretion in response to exogenous PTH 
administration (1,2,3,4,5,24). In PHP-II, urinary cAMP 
generation in response to exogenous PTH administration is 
normal, but the urinary excretion of phosphate is impaired 
(25). Although the common biochemical features of PTH 
resistance are hypocalcemia, hyperphosphatemia, and 
elevated PTH levels, and found in PHP-Ia, PHP-Ic, and PHP-
Ib; AHO is the part of clinical picture in PHP-Ia, PHP-Ic, pPHP 
and occasionally in PHP-Ib. In PHP-Ia/PHP-Ic, in addition to 
PTH resistance, hypothyroidism, growth hormone deficiency 
and hypogonadism are also demonstrable reflecting 
target-organ resistance to thyroid-stimulating hormone 
(TSH), growth hormone-releasing hormone (GHRH) and 
gonadotropins, respectively (1,2,3,4,5).

This complex classification of PHP is based on several distinct 
criteria, including the presence of AHO features, hormone 
resistance, urinary cAMP and phosphaturic response to 
exogenous PTH and Gsα activity (Table 1). However, there 
are some combinations of features which do not fit readily 
into this classification, especially with recent development 
in the field. 

Controversies in Pseudohypoparathyroidism Type I 

The presence or absence of hormonal resistance is the one 
of the key findings, which differentiates PHP from pPHP, 
maternal from paternal mutations, respectively. However, 
mild resistance to PTH and possibly to other hormones such 
as TSH, has been described in patients carrying a paternal 
GNAS mutation, that is patients with pPHP (26), so that 
hormonal resistance is now not only associated with PHP, 
but with pPHP as well.

Another cornerstone of the earlier classification of PHP is 
presence or absence of features of AHO, which differentiates 
PHP-Ia/PHP-Ic from PHPI-b. However, a number of reports 
from the last decade have also shown that AHO features 
can exist in patients with epigenetic abnormalities of 
GNAS or namely PHP-Ib (27,28,29,30). Furthermore, GNAS 
methylation changes reminiscent of PHP-Ib have been 
reported in PHP-Ia patients with GNAS deletions (31). These 
findings suggest a molecular and clinical overlap between 
the two subtypes.

The measurement of Gsα protein activity from erythrocyte 
membranes is one diagnostic method used for differentiating 
PHP-Ic from PHP-Ia/pPHP, in patients with AHO features and 
carrying GNAS coding mutations. Additionally, according to 
the previous criteria, Gsα activity is expected to be normal in 
patients with PHP-Ib (1,2,3,4,5,6). However, recently PHP-
Ib patients have been shown to have a moderate reduction 
in Gsα activity, in a similar but less severe manifestation 
as patients with PHP-Ia/pPHP (32). Thus, PHP-Ib patients 
having methylation abnormalities and with AHO features 
might also have low Gsα activity and the clinical and 
biochemical findings of these patients are consistent with 
PHP-Ia (32). On the other hand, if Gsα activity is normal 
in the patient with PHP-Ib and AHO features, the patients 
could be described as PHP-Ic, clinically and biochemically 
(27,28,29,30,32). 

Additionally, molecular defects are not unique to PHP-Ic. The loss-
of-function mutations in the carboxyl-terminus of GNAS, causing 
disruption of receptor-mediated activation but conservation of 
adenylyl cyclase receptor-independent activation, lead to PHP-
Ic (33,34,35). And methylation defects, as found in PHP-Ib 
could be another molecular defect present in patients described 
clinically and biochemically as PHP-Ic (34). 
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Table 1. Disease related parathyroid hormone/parathyroid hormone-related protein and cyclic adenosine monophosphate 
signaling pathway and former classification according to clinical features and molecular defects

Molecular
defects

Parental
origin

Hormonal 
abnormalities 

Additional
clinical features

Urinary 
cAMP to 
exogenous 
PTH

Urinary 
phosphate 
to  
exogenous  
PTH

Erythrocyte 
Gsα activity

PHP Ia
(OMIM #103580)

Gsα coding
mutations-
inactivating

Maternal PTH resistance
TSH resistance
Other hormone 
resistances (GHRH, 
gonadotrophins, 
calcitonin, etc.)

AHO features Blunted Blunted Reduced

PHP Ic
(OMIM #612462)

Gsα coding
mutations-
inactivating

Maternal PTH resistance
TSH resistance
Other hormone 
resistances (GHRH, 
gonadotrophins, 
calcitonin, etc.)

AHO features Blunted Blunted Normal

pPHP
(OMIM #612463)

Gsα coding
mutations-
inactivating

Paternal  No AHO features Normal Normal Reduced

POH
(OMIM #166350)

Gsα coding
mutations-
inactivating

Paternal No No Normal Normal Reduced

PHP Ib
(OMIM #603233)

Methylation
defects

Maternal PTH resistance
TSH resistance

No Blunted Blunted Normal

Acrodysostsosis 
type 1
(OMIM #101800)

PRKAR1A  
mutations-
leading 
reduced PKA 
activity

Autosomal 
dominant

PTH resistance
TSH resistance in 
some

AHO
Typical face
 

Normal Blunted Normal

Acrodysostsosis 
type 2

PDE4D 
mutations-
activating

Autosomal 
dominant

PTH resistance
TSH resistance 
Other hormone 
resistances (GHRH, 
gonadotrophins, 
calcitonin, etc.)

AHO
Typical face

Normal Blunted Normal

Hypertension and 
brachydactyly 
Syndrome (OMIM 
#112410)

PDE3A 
mutations-
activating

Autosomal 
dominant

Unknown AHO
Hypertension

Unknown Unknown Unknown 

Blomstrand 
chondrodysplasia 
(OMIM #215045) 

PTH1R 
mutations-
inactivating 

Autosomal 
recessive

Unknown Severe skeletal 
dysplasia, 
Lethal, abnormal 
breast and tooth 
development, 
Accelerated 
ossification

Unknown Unknown Unknown

Eiken syndrome
(OMIM #600002) 

PTH1R 
mutations-
inactivating

Autosomal 
recessive

PTH resistance 
(mild)

Severe skeletal 
dysplasia, dwarfism, 
Retarded ossification

Unknown Unknown Unknown

OMIM: Online Mendelian Inheritance in Man, PHP: pseudohypoparathyroidism, pPHP: pseudo-pseudohypoparathyroidism, POH: progressive osseous 
heteroplasia, cAMP: cyclic adenosine monophosphate, PTH: parathyroid hormone, AHO: albright hereditary osteodystrophy, TSH: thyroid-stimulating hormone, 
GHRH: growth hormone-releasing hormone,  Gsα: α-subunit of the stimulatory guanine nucleotide-binding protein, PKA: protein kinase A
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There are too many inconsistencies described in the 
literature of PHP-I subtypes, both clinically, genetically and 
biochemically when using the earlier classification so that 
a newer, comprehensive classification would be welcome. 

Furthermore, progressive osseous heteroplasia (POH) 
is a distinct entity described in patients with paternally 
inherited GNAS mutations, usually causing truncation of the 
gene product (36). Features typical of AHO and hormone 
resistance have been detected in some patients with POH. 
Conversely, some PHP-Ia patients with maternal mutations 
present with POH-like progressive deepening of the 
heterotopic ossifications (37,38). Furthermore, POH lesions 
show a mosaic distribution and follow dermomyotomes, 
usually with a unilateral pattern. Experimental evidence has 
shown that a loss of heterozygosity at the GNAS locus, with 
somatic mutations in a progenitor cell of somitic origin, 
may cause severe, progressive heterotopic ossifications that 
show a similar unilateral distribution (39). 

Controversies in Pseudohypoparathyroidism Type II

The differentiation of PHP-I from PHP-II is made by 
comparing the in vivo response to exogenous PTH in terms 
of nephrogenic cAMP synthesis and phosphaturia. The 
presence of cAMP elevation without phosphaturia marks 
PHP-II (24,25). Until 2011 no clear etiopathogenesis had 
been described for PHP-II (40). However, then and since, 
patients with acrodysostosis, have been found to exhibit 
biochemical abnormalities found in PHP-II. In addition, 
heterozygous mutations in PRKAR1A, which encodes the 
regulatory subunit of protein kinase A (PKA) and PDE4D, 
which encodes phosphodiesterase type 4, have been found 
in patients with acrodysostosis (40,41,42). Both PRKAR1A 
and PDE4D have a role in cAMP generation, down stream 
of Gsα. Thus, a heterogeneous group of rare diseases, 
characterized by skeletal dysplasia, has been included in the 
classification of PHP.

Acrodysostosis is characterized by skeletal dysplasia and has 
characteristic features, including BD, facial dysmorphism 
and, in some cases, mental retardation (43,44,45,46,47). 
Hormone resistances, usually PTH and/or TSH resistance, 
have been detected in about 60-70% of acrodysostosis 
patients with a PRKAR1A mutation and in 10-20% of cases 
with PDE4D mutations. However, typical facial features and 
more generalized BD distinguishes acrodysostosis from 
PHP (46,48). On the other hand, it has been shown that 
some cases with a phenotype typical of PHP-Ia also have 
PRKAR1A mutations (49,50). 

Another disease that has been shown to involve the cAMP 
pathway is hypertension and brachydactyly syndrome 
(HTNB-Bilginturan syndrome, OMIM #112410) which is 

characterized by hypertension, BD type E (BDE) and short 
stature. Heterozygous mutations in PDE3A have been 
identified in patients affected with HTNB (51). Of note, BDE 
and short stature are clinical features of AHO. 

Although these two diseases, acrodysostosis and HTNB 
syndrome exhibit molecular defects in the PTH-cAMP 
pathway and are clinically identical to PHP/pPHP, they 
were not previously included in the classification of PHP. 
Furthermore, disorders associated with an impaired function 
of PTH1R, i.e. Blomstrand and Eiken skeletal dysplasia, 
are also currently not included in the classification of 
PHP. In addition, other diseases featuring defects in cAMP 
and its downstream pathway, should have a place in the 
classification if they are described in the future.  

Rationale for the New Classification 

In light of this new evidence the EuroPHP network, which 
is composed of experts from different independent centres, 
proposed a new classification to create a uniform terminology 
and classification based on the current knowledge of PHP 
(52). The term “inactivating PTH/PTHrP signalling disorder” 
(iPPSD) was selected since it describes the common 
mechanism responsible for the diseases, encompasses all 
disorders related to this pathway and was flexible enough to 
incorporate new development in this field (52). 

The terms “PHP” and “pPHP” are confusing, both for 
description of the diseases and for use in communication. 
iPPSD is more compact and describes a group of disorders 
which makes the disease classification easier from the 
beginning. For the diagnosis of iPPSD, major and minor 
criteria have been described and a minimum of one of the 
major criteria is mandatory for clinical diagnosis of iPPSD 
(see Table 2) (52). PTH resistance or ectopic ossifications 
could be diagnostic for iPPSD with or without the presence 
of minor criteria. However, since BDE is a common feature 
of several other diseases and syndromes, in patients 
exhibiting BDE at least one major or two minor criteria 
should also be present for a diagnosis of iPPSD. 

The entities included in iPPSD classification, with known 
molecular causes of impaired PTH/parathyroid hormone-
related protein (PTHrP) signaling (52) are: 

- Inactivating mutations of PTH1R

- Heterozygous inactivating mutations in the coding 
sequence of GNAS-Gsα

- Methylation changes of the DMRs of GNAS caused by 
deletions or duplications (STX16; NESP; GNAS-AS1) or 
paternal UPD of chromosome 20q or unknown mechanism(s)

- Heterozygous mutations of PRKAR1A leading to reduced 
PKA activity 
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- Heterozygous activating mutations of PDE4D

- Heterozygous activating mutations of PDE3A 

Major and Minor Criteria

Major Criteria

1. PTH resistance: PTH resistance is defined as elevated 
PTH with or without hypocalcemia, hyperphosphatemia. 
Resistance occurs only at the renal proximal tubule and distal 
renal tubule and PTH is functionally intact and therefore, the 
patients will have hypocalciuria (1,2,3,4,5). 

For evaluation of PTH resistance and to differentiate PTH 
resistance from normocalcaemic hyperparathyroidism, 
renal failure, vitamin D deficiency and any form of 
secondary hyperparathyroidism, the following laboratory 
tests should be performed; ionized calcium, total calcium, 
phosphate, magnesium, PTH, vitamin D (25-hydroxyvitamin 
D), creatinine, urinary calcium and urinary phosphate 
excretion. A PTH infusion test is reserved for challenging 
cases (1,2,3,4,5,52). 

2. Ectopic ossification: Ectopic ossifications are foci of 
bone formation in the adipose or dermal tissue, which 
manifest as superficial, subcutaneous nodules (1,2,3,4,5). 
Progression of heterotopic osseous calcifications, usually 
from the dermal and subcutaneous tissues to the deeper 
tissues, such as muscles and tendons may be seen and 
defined as POH (36,37,38). In children, ectopic ossifications 
are highly suggestive of an inactivating GNAS mutation, i.e. 
iPPSD (52). 

Diagnosis of ectopic calcification can be made by inspection 
and palpation on physical examination and may be detected 
by X-ray imaging if tissue is large enough. In selected cases, 
diagnosis may involve biopsy, but it is not recommended 
due to an increased risk for progression of biopsied osseous 
tissue (52). Fibrodysplasia ossificans progressiva (OMIM 
#135100) and post-traumatic osteoma cutis  should be 
differentiated (53). Calcification rather than ossification 
should be considered as a differential diagnosis, as in 
tumoral calcinosis which is related to the defective activity 
of fibroblast growth factor 23 (FGF23), in which mutations 
in FGF23, GALNT3 and α-klotho have been identified (54).

3. BDE: BD refers to shortening of the fingers, toes or both. 
BD in iPPSD should be classified as BDE (OMIM #113300), 
which is characterized by variable shortening of the 
metacarpals, with more or less normal length of phalanges, 
occasionally accompanying shortened metatarsals (55). 
Hypoplastic and partially fused metacarpal epiphyses, seen 
on radiographs, are the cause of BD and lead to BDE. In 
addition, the terminal phalanges are often short (55). It can 
either present in isolation or as part of a genetic disorder, 
most of which are included in the iPPSD classification (56). 

Almost all patients with GNAS mutations have BD and 
decreased Gsα activity, which is usually decreased by 
around 50% (57,58,59). Although, Gsα activity is supposed 
to be normal in cases with methylation abnormalities such 
as in the entity known as PHP-Ib formerly, PHP-Ib patients 
with an AHO phenotype have more severely diminished 
Gsα activity levels than those who do not have the AHO 
phenotype (32). Furthermore, BD has been detected in 
both patients with a genetic mutation and in those with an 
imprinting error in PHP-Ib but at differing median ages of 
detection; 7.2 years in the former and 13.2 years in the 
latter (60). These results could be related to the degree of 
the Gsα functional impairment with a more severe loss 
of function leading to earlier BD development. It can be 
difficult to detect BD, especially in early childhood, and 
tends to become more evident during early puberty. BD can 
be overlooked when all bones are short as in acrodysostosis 
which has affected the patient since early childhood (61). 

Clinical and radiological evaluation of hand bones are 
necessary for a diagnosis of BDE. On clinical examination, 
by using a straight ruler at the head of the metacarpals 
of the closed fist, the tips of 3rd, 4th and 5th metacarpals 
should be in a line and touching the ruler. If the 4th or 5th 
metacarpals are receding, this can be accepted as a positive 
metacarpal sign, also known as Archibald’s sign (55,62,63). 
The evaluation on X-rays can be done in a similar fashion 
(55,63). However, normally this sign is positive in only 
9.6% of individuals and if a deviation of more than 2 

Table 2. Diagnosis of inactivating parathyroid hormone/
parathyroid hormone-related protein signalling disorder 
with major and minor criteria 

1. Major criteria 

1. PTH resistance 

2. Ectopic ossification 

3. Brachydactyly type E 

2. Minor criteria 

1. TSH resistance 

2. Other hormonal resistances 

3. Motor and cognitive retardation or impairment 

4. Intrauterine and postnatal growth retardation 

5. Obesity/overweight 

6. Flat nasal bridge and/or maxillar hypoplasia and/or round 
face 

Parathyroid hormone/parathyroid hormone-related protein signalling 
disorder clinical diagnosis: Either presence of one major criteria, either 
number 1 or 2; or presence of major criteria number 3 and at least 2 minor 
criteria

PTH: parathyroid hormone, TSH: thyroid-stimulating hormone
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mm is accepted as a limit, only 0.5% of individuals 
have the sign (64). In addition, if all bones are short, this 
metacarpal sign will be negative. If so, each metacarpal 
and phalangeal bone should be measured and evaluated 
separately (metacarpo-phalangeal profile). If shorter than 
2 standard deviation scores (SDS) for the individual bone, 
it is accepted as short and BD (65). Differential diagnoses 
for BDE are Turner syndrome, tricho-rhino-phalangeal 
syndrome (TRPS) including TRPS type I, (OMIM #190350), 
TRPS type II (OMIM #150230) and TRPS type III, (OMIM 
#190351), BDE with short stature, parathyroid hormone-like 
hormone (PTHLH, OMIM #613382), isolated BDE: HOXD13 
type (OMIM #113300) and BD mental retardation syndrome 
(OMIM #600430) (56).

While existence of PTH resistance or ectopic ossifications 
are considered diagnostic for iPPSD as major criteria; BD 
is less specific and should, therefore, be present with at 
least one other major or two minor criteria to consider the 
diagnosis of iPPSD.

Minor Criteria 

1. Thyroid-Stimulating Hormone Resistance 

TSH resistance is usually characterized by mildly elevated TSH 
levels with a normal or low-normal free thyroxine (T4) level. 
TSH levels are usually below 50 mIU/L (66,67).  Sometimes 
patients present with clinical symptoms of hypothyroidism, 
such as prolonged jaundice, macroglossia, hypothermia and 
umbilical hernia in neonates or constipation and listlessness 
in infants (66,68). 

Hypothyroidism occurs in the absence of goiter and markers 
of autoimmune disease (66,67).  In laboratory evaluation, 
TSH, free-T4, anti-thyroid antibodies and thyroid ultrasound 
should be performed. TSH receptor inactivation mutation 
can be considered in the differential diagnosis (52,66,67).

TSH resistance could be a first manifestation of iPPSD, 
especially if referred from the neonatal screening program 
for congenital hypothyroidism (68,69).  

2. Other Hormone Resistances 

Other hormone resistances are also present in iPPSD. Growth 
hormone deficiency due to resistance to GHRH, is the next 
most frequent resistance reported, and found in 60% of 
patients with PHP-Ia (70,71,72). Calcitonin resistance has 
also been also described in patients with PHP-Ia, but with no 
known associated clinical or biochemical abnormalities (67). 
Gonadotropin resistance, with elevated follicle-stimulating 
hormone (FSH) and luteinizing hormone (LH) levels, is a 
further G-protein coupled hormone resistance reported in 
iPPSD (73,74). Glucagon and adrenaline resistances have 
been demonstrated through in vivo testing in patients with 
low Gsα bioactivity (75,76). 

For evaluation of growth hormone deficiency; insulin-
like growth factor (IGF)-1, IGFB-3 and growth hormone 
stimulation tests can be performed, if necessary. Serum 
measurements of calcitonin, LH and FSH are helpful if 
the respective resistance is suspected and in addition a 
gonadotropin-releasing hormone/LH-releasing hormone 
test may be performed.

Motor and Cognitive Retardation or Impairment 

Psychomotor and cognitive impairments have been described 
as a feature of AHO. A significant proportion of patients (40-
70%) with a maternal coding mutation of GNAS, (formerly 
PHP-Ia) has been shown to have cognitive impairment (22,77). 
However, cognitive impairment is seen rarely in patients with 
paternally inherited GNAS mutations (PPHP, POH) ranging 
from 0% to 10% of cases (78). The patients with methylation 
abnormalities, i.e. PHP-Ib, may also have cognitive impairment 
(79,80,81) especially if they have AHO features, as cognitive 
impairment is reported in almost half of them (30). Additionally, 
varying severity of psychomotor and cognitive impairment 
has been described in some patients with acrodysostosis 
(42,44,45). It has been suggested that psychiatric disorders 
may be part of the disease spectrum (82). However, patients 
with paternal mutations of GNAS or epigenetic modifications 
of GNAS DMRs seem to be unaffected (22,83). 

Intrauterine and Postnatal Growth Retardation 

Intrauterine growth retardation (IUGR) has been frequently 
observed in patients with inactivating GNAS coding 
mutations. Although both paternal and maternal inherited 
mutations are associated with IUGR, patients harbouring 
mutations on the paternal GNAS allele are more severely 
affected, especially when the mutation is in exons 2 to 
13, compared with patients with GNAS exon 1/intron 1 
mutations (84). The reason for paternal GNAS exon 2-13 
mutations causing more severe IUGR is due to an impairment 
of another transcript of GNAS, XLαs, which is essential 
for early postnatal adaptation to feeding and survival, as 
well as glucose counterregulation (85,86). IUGR has also 
been described in other iPPSD, such as acrodysostosis 
with mutations in PRKAR1A or PDE4D, and in patients 
with mutations in PDE3A (40,41,49,51). However, loss of 
methylation at the maternal GNAS A/B: PHP-1b has been 
associated with increased intrauterine growth and high 
birth weight (87). 

Postnatal growth retardation resulting in short final height 
is a common finding in PHP-Ia and acrodysostosis. Growth 
hormone deficiency and premature closure of the epiphysis 
are the causes of short stature (40,41,70,88). Rarely, growth 
retardation has also been described in PHP-Ib (27,30) and in 
patients with Eiken dysplasia (89). 
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Obesity/Overweight 

Obesity or overweight is commonly present but, is possibly 
the most nonspecific minor sign of iPPSD. However, early 
onset obesity is an important clinical feature manifesting 
from the first few months of life and resulting in severe 
obesity during infancy. However, obesity tends to improve 
as the patient ages. In adulthood, only about two thirds 
of PHP-Ia are obese with a mean body mass index (BMI) 
Z-score of 1.7±0.2 (77,90,91).  

Patients with maternally inherited GNAS coding exon 
mutations, but not those carrying mutations on the paternal 
allele, have obesity/overweight. This may be helpful 
in differentiating PHP-Ia from pPHP. Growth hormone 
deficiency, impaired lipolytic response to adrenaline (76) or 
decreased resting energy expenditure (92) may all contribute 
to the development of obesity in patients with mutations on 
the maternal allele (23,91). Obesity is also a frequent feature 
in patients affected with acrodysostosis (40,49,93). For 
evaluation, weight charts and BMI SDS or percentile charts 

are necessary. Monogenic obesity stemming from leptin/
melanocortin pathway abnormalities should be considered 
in differential diagnosis of early onset obesity (94). 

Flat Nasal Bridge and/or Maxillar Hypoplasia and/or Round Face  

Patients with acrodysostosis have typical facial features with 
flat nasal bridge and/or maxillar hypoplasia and patients with 
PHP-Ia have a round face which is inconsistent with the degree 
of obesity. These findings are, however, nonspecific (19,45). 

The New Classification (Figure 1)

The former classification of PHP/pPHP is based on the 
clinical and biochemical phenotype. However, a new 
classification, iPPSD, has been identified according to 
described clinical and biochemically criteria. Further 
subtyping will be possible by identifying the underlying 
molecular genetic or epigenetic defect. Thus, the term iPPSD 
refers to the pathophysiology, which is impairment of PTH/
PTHrP signaling, and the number refers to the underlying 
molecular defect as shown below (52).

Figure 1. The new classification proposed by the European Pseudohypoparathyroidism Network (52) with new nomenclature 
on the left with molecular defects and the disease names listed in the right column
PTH: parathyroid hormone, PTHrP: parathyroid hormone-related protein, iPPSD: inactivating parathyroid hormone/parathyroid hormone-related 
protein signaling disorder, DMRs: differentially methylated regions, POH: progressive osseous heteroplasia, PHP: pseudohypoparathyroidism, pPHP: 
pseudopseudohypoparathyroidism, AHO: Albright hereditary osteodystrophy, PKA: protein kinase A, HTNB: hypertension and brachydactyly syndrome
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The Classification of Inactivating PTH/PTHrP Signalling Disorder (52)

iPPSD: Clinical/biochemical diagnosis based on the major/
minor criteria described, without any genetic investigation/
diagnosis.

iPPSD1: Loss-of-function mutation in PTH1R. 

iPPSD2: Loss-of-function mutation in Gsα.  

iPPSD3: Methylation change(s) at one or more GNAS DMRs, 
associated with or without a genetic deletion (STX16, 
NESP55, AS etc.) or cytogenetic (UPD) defect. The loss of 
methylation at the GNAS A/B is the common mechanism 
shared by these patients. 

iPPSD4: Mutation in PRKAR1A leading reduced PKA activity.

iPPSD5: Gain-of-function mutation in PDE4D mutation. 

iPPSD6: Gain-of-function mutation in PDE3A mutation. 

iPPSDx: Absence of any genetic/epigenetic defect after 
molecular investigations of known genes described above 
but fitting the criteria for iPPSD. 

iPPSDn+1: Identification of a new gene and/or molecular 
defect will increment the number of iPPSD types by one, i.e. 
iPPSD7, iPPSD8 and so on. 

With this new classification, the disorders were stratified 
according to etiopathogenesis, thus mechanism and 
simplified the concept of the overlapping disorders under 
a single umbrella. Additionally, it is flexible enough to 
accommodate new defects which may be discovered in the 
future. However, with this classification, the parental origin 
of the genetic/epigenetic defect is not taken into account, 
although iPPSD2 and iPPSD3 are imprinting disorders and 
their clinical presentation depends on the parental origin 
of inheritance. Although multiple hormone resistance, 
including PTH resistance, are largely associated with 
maternal GNAS mutations and isolated AHO and/or POH 
are more often associated with paternal GNAS mutations, 
hormone resistance and POH may be seen in both maternal 
and paternal inactivating GNAS mutations. Therefore, 
the new classification does not include parental origin 
of mutation but for genetic counseling this point should 
be considered. The mechanism of the two allelic GNAS 
mutations can be considered alike. Another point of this 
classification is the inability to sub-classify individuals with 
purely clinical findings-molecular analysis is mandatory. 
Cases should be classified as iPPSD, not iPPSDx, pending 
definitive molecular diagnosis. 

Furthermore, PTHR1 has been included in the classification. 
However, two main ligands of PTHR1, PTH and PTHrP and 
related disorders are not chosen as a part of classification. 

Since, BDE with short stature seen in patients with PTHLH 
mutations, encoding PTHrP, (95,96), this point could be 
argued. Since these disorders are not primarily related to the 
signaling pathway defect, it is not included in the definition 
of main classification.

Conclusion

A new classification has been established by the EuroPHP 
network to cover all disorders of the PTH receptor and its 
signaling pathway. iPPSD is the new name proposed for 
this group of conditions and which are further divided 
into the subtypes from iPPSD1 to iPPSD6. With this new 
classification, it is aimed to clarify the border of each 
different subtype of disease and make the classification 
according to molecular pathology. The iPPSD group is a 
growing group of conditions and new entities can readily be 
fitted into this classification.
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