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Introduction

Type 1 diabetes (T1D) is a chronic autoimmune condition 
characterized by the destruction of insulin-producing 

beta cells in the pancreas, leading to lifelong dependence 
on exogenous insulin therapy (1,2). The honeymoon 
phase is a well-recognized but transient period following 
the initial diagnosis of T1D, where patients experience a 
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What is already known on this topic?
The honeymoon phase in type 1 diabetes (T1D) is characterized by a temporary period of reduced insulin needs and better glucose 
control. Current methods for identifying this phase rely on clinical observations, but they lack precision and often result in delayed or 
suboptimal insulin management.

What this study adds?
This study introduces advanced machine learning models, such as long short-term memory networks and transformer models, to 
accurately detect the honeymoon phase in T1D patients. By analyzing continuous glucose monitoring data, these models enhance the 
precision of honeymoon phase identification, leading to more personalized insulin management and improved overall glycemic control.

Abstract
Objective: The honeymoon phase in type 1 diabetes (T1D) represents a temporary improvement in glycemic control but may complicate 
insulin management. The aim was to develop and validate a machine learning (ML)-driven method for accurately detecting this phase to 
optimize insulin therapy and prevent adverse outcomes.
Methods: Data from pediatric T1D patients aged 6-17 years, including continuous glucose monitoring data, glucose management 
indicator (GMI) reports, hemoglobin A1c (HbA1c) values, and patient medical history, were used to train ML models including long short-
term memory (LSTM) networks, transformer models, random forest, and gradient boosting machines (GBMs). These were designed to 
analyze glucose trends and identify the honeymoon phase in T1D patients.
Results: The transformer model achieved the highest accuracy at 91%, followed by GBMs at 89%, LSTM at 88%, and random forest at 
87%. Key features, such as glucose variability, insulin adjustments, GMI values, and HbA1c levels were critical to model performance. 
Accurate identification of the honeymoon phase enabled optimized insulin adjustments, enhancing glucose control and reducing 
hypoglycemia risk.
Conclusion: The ML-driven approach provides a robust method for detecting the honeymoon phase in T1D patients, demonstrating 
potential for improved personalized insulin management. The findings suggest significant benefits in patient outcomes, with future 
research focused on further validation and clinical integration.
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temporary remission of symptoms and improved glycemic 
control (3,4,5). During this phase, the body retains some 
residual insulin secretion, reducing the exogenous insulin 
requirements and stabilizing blood glucose levels. This 
phase can last from a few months to over a year and varies 
significantly between patients (6). 

However, the honeymoon phase also presents a clinical 
challenge, as fluctuating insulin needs complicate management 
strategies, leading to a higher risk of both hypoglycemia and 
hyperglycemia if not accurately detected and managed (Figure 
1) (7). The honeymoon phase is quantified based on significant 
reductions in insulin requirements, typically defined as a 20-
30% decrease in the insulin dose over a 3-6-month period, 
along with a stable or improving trend in blood glucose levels. 
Moreover, glucose variability is measured by analyzing the 
standard deviation of continuous glucose monitoring (CGM) 
readings during this period (8).

Accurate detection of the honeymoon phase is important 
for optimizing insulin therapy. Early identification enables 
healthcare providers to adjust dosages precisely, potentially 
prolonging the phase and improving patient outcomes (9). 
Traditional detection methods, such as clinical judgment and 
periodic hemoglobin A1c (HbA1c) monitoring (Figure 2), 
often lack the precision required to capture nuanced 
fluctuations in glucose levels, leaving a gap in timely and 
effective management (10,11,12).

Recent advances in machine learning (ML) techniques 
offer a promising alternative by leveraging large datasets 
to uncover patterns not apparent through conventional 
methods (13,14,15). ML has already demonstrated 
significant potential in diabetes management, including 
predicting glucose trends, optimizing insulin delivery, and 
personalizing treatment strategies (16,17,18,19,20). For 
instance, transformer models and long short-term memory 
(LSTMs) networks have been employed to predict glucose 
variability, while reinforcement learning approaches have 
facilitated personalized insulin dosing strategies using CGM 
data (21,22). ML applications are also being explored for 
predicting hypoglycemic events and enhancing artificial 
pancreas systems (23,24).

This study focused on applying ML modeling to identify 
the honeymoon phase in T1D patients, an area that 
remains largely unexplored in prior research. By employing 
algorithms such as LSTM networks, transformer models, 
random forest, and gradient boosting machines (GBMs), 
the proposed approach aims to overcome the limitations 
of traditional techniques (25,26,27). The analysis relied on 
a comprehensive dataset comprising CGM data, glucose 
management indicator (GMI) reports, HbA1c values, and 
patient medical history, which add credibility and robustness 
to the study (28,29).

Building on previous work, this study uniquely addresses 
the honeymoon phase using a data-driven framework. Early 
and accurate detection has the potential to personalize 
insulin therapy, reduce glycemic variability, and extend the 
duration of partial remission, ultimately improving long-
term outcomes for T1D patients.

Methods

The dataset for this study was sourced from multiple clinical 
sites, encompassing a diverse range of T1D patient profiles. 
Each site contributed de-identified data to ensure patient 
confidentiality and adherence to ethical standards. By 
aggregating data from various clinical settings, the study 
captured a comprehensive array of patient experiences and 
glucose management scenarios, facilitating a robust analysis 
of the honeymoon phase in T1D (30). This approach not 
only enhanced the generalizability of the findings but also 
upheld rigorous ethical practices by anonymizing patient 
information throughout the data collection and analysis 
processes (31). The dataset, which included information 
from the Kaggle platform, further supports this by providing 
a rich resource for developing and validating ML models 
aimed at optimizing insulin management and identifying 
the honeymoon phase in T1D pediatric patients (32,33).

Figure 1. Glucose levels classification

Figure 2. A1c levels for diagnosing diabetes
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Data Collection

CGM devices were calibrated against a standard glucose 
meter to ensure accuracy before data collection. Patients 
wore the devices continuously, typically on the upper arm 
or abdomen, providing real-time glucose monitoring. Data 
was transmitted securely to a server, with encryption and 
backups ensuring data integrity and patient confidentiality. 
High-resolution glucose measurements were recorded 
every 5 minutes, with monthly GMI reports summarizing 
long-term control. Patient medical history, including 
demographics, insulin regimens, and historical glucose 
data, was comprehensively documented to support detailed 
analysis (34).

In addition to clinical data, a publicly available, anonymized 
diabetic dataset from Kaggle was used to validate ML 
models. This supplemental dataset provided additional 
diversity in glucose trends and patient characteristics, aimed 
at enhancing the robustness of the analysis. The combined 
dataset included 150 pediatric T1D patients, with an age 
range of 6 to 17 years.

The CGM system recorded glucose levels in the interstitial 
fluid at regular intervals, providing a comprehensive view of 
glucose fluctuations over time. Each 24-hour period yielded 
between 96 and 288 data points, critical for analyzing short- 
and long-term glycemic control (35). Day-wise GMI reports 
monitored glucose levels and identified hypoglycemic 
events, focusing on readings below 70 mg/dL, as shown in 
Figure 3. This data enabled accurate adjustments to insulin 
management strategies.

Insulin doses were adjusted based on real-time CGM data 
and day-wise GMI reports to optimize glucose control. The 

adjustment protocol involved reducing doses when glucose 
levels fell below 70 mg/dL to prevent severe hypoglycemia. 
Conversely, doses were increased when glucose levels 
exceeded the target range or insulin needs changed due to 
meal times or physical activity (36). 

To optimize glucose control during the study, insulin doses 
were adjusted using a structured approach based on real-
time CGM data and the automated bolus suggestion (ABS) 
formula. The ABS formula, applied to each patient, accounts 
for current blood glucose levels, target glucose goals, insulin 
sensitivity, and carbohydrate intake. 

HbA1c levels were monitored to reflect long-term glucose 
control by averaging blood glucose over the past two to three 
months. Comparing HbA1c trends with CGM data evaluated 
whether short-term insulin modifications improved long-
term glycemic control. Regular HbA1c monitoring provided 
insights into the success of treatment strategies, with 
lower levels indicating better control and reduced risk of 
complications (37). Key features extracted included glucose 
levels, insulin doses, glucose variability, and hypoglycemic 
events, focusing on episodes where glucose fell below 
70 mg/dL. GMI reports were also incorporated, offering 
monthly summaries that reflected long-term glucose control 
and trends. HbA1c values (38), reflecting the average blood 
glucose levels over the past two to three months (Figure 4), 
were used to validate the effectiveness of insulin adjustments 
and the overall glucose management strategy.

Ethical Considerations

Patient data were anonymized to protect confidentiality 
and comply with data protection regulations. Institutional 
Review Board approval was obtained for the use of patient 

Figure 3. Day-wise glucose management indicator reports

Max.: maximum, Min.:minimum
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data, and informed consent was acquired from the patient 
for the use of their data in this study. The dataset from 
Kaggle was used to supplement the analysis, which contains 
anonymized data from multiple patients with diabetes, and 
was used in compliance with ethical standards for secondary 
data analysis. The study was approved by the Narasaraopeta 
Engineering College: Narasaraopeta of Institutional Review 
Board (IEC ref. no: 01/2024, date: 28.08.2024).

Statistical Analysis

The statistical analysis for this study was conducted to 
evaluate the effectiveness of insulin dose adjustments and 
glucose management in identifying the honeymoon phase 
in pediatric T1D patients. Descriptive statistics, including 

mean, median, standard deviation, and coefficient of 
variation, were calculated to summarize glucose levels and 
insulin doses over the study period. Temporal metrics, such 
as time-in-range, time-below-range, and time-above-range, 
were computed to assess glycemic control. Correlation 
analysis and linear regression were employed to examine 
the relationship between insulin doses and glucose levels, 
with statistical significance set at p<0.05.

All statistical analyses were performed using R, version 
4.3.2 (R Foundation for Statistical Computing, Vienna, 
Austria). Additional data processing and visualization were 
conducted using Python (version 3.11.5) with the pandas 
and matplotlib libraries (Python Software Foundation, 
Wilmington, Delaware, USA).

Figure 4. Longitudinal A1c report

Figure 5. Glucose management indicator trends over time
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Machine Learning Models

ML models were employed to enhance the identification 
of the honeymoon phase in T1D pediatric patients by 
analyzing data from CGM devices, insulin dosages, glucose 
variability, and hypoglycemic events. These models 
used advanced algorithms to detect patterns and trends 
indicative of the honeymoon phase, characterized by a 
temporary improvement in glycemic control and reduced 
insulin requirements (39,40).

Rationale for Model Selection

The selection of ML models in this study was based on the 
unique characteristics of the dataset and the challenges 
of detecting the honeymoon phase. LSTM networks were 
chosen for their ability to capture temporal patterns in 
sequential CGM data. Transformers, with their self-attention 
mechanisms, offer precision in identifying complex 
relationships between glucose data and insulin adjustments. 
Random forest classifiers were used for their robustness 
in handling noisy and diverse datasets, while GBMs were 
selected for their ability to iteratively improve prediction 
accuracy by identifying subtle patterns in glucose data. This 
combination of models ensures a comprehensive approach, 
taking advantage of each model’s strengths to address the 
dataset’s temporal, variable, and noisy nature (41).

LSTM networks were used for their ability to analyze time-
series CGM data effectively, interpreting temporal patterns 
to identify significant glucose trends. LSTM memory cells 
and gating mechanisms allows a focus on relevant patterns 
while filtering out noise, optimizing insulin adjustments 
based on real-time glucose trends (21,42).

Transformers were applied to capture intricate patterns 
in glucose fluctuations and insulin adjustments using self-
attention mechanisms. These models excel in preserving 
sequence order through positional encoding, enabling 
precise long-term trend interpretation and supporting 
personalized insulin management (25,43).

Random forest classifiers handled the diversity and noise 
in glucose data by constructing multiple decision trees and 
aggregating their predictions. This ensemble technique 
reduces overfitting and accommodates variations in 
glucose measurements and insulin regimens, enhancing 
classification robustness (26,44).

GBMs were employed for their ability to model complex 
relationships and sequentially refine predictions. By 
capturing subtle patterns in CGM data, GBMs improve 
accuracy and reliability in identifying the honeymoon phase, 
contributing to more personalized and effective treatment 
strategies (27-45).

The performance of these models was evaluated using 
metrics including accuracy, precision, recall, and F1-score, 
ensuring reliable detection of the honeymoon phase while 
minimizing false positives and negatives. These models 
collectively enhanced the classification of complex glucose 
patterns, supporting tailored insulin management for T1D 
patients (46).

Results

The honeymoon phase in T1D was identified through a 
comprehensive analysis of the patient’s longitudinal glucose 
data, insulin dose adjustments, and ABS reports. This section 
details the process of identifying the honeymoon phase. 

Glycemic Control and Insulin Adjustments

The GMI trends provided essential insights into glycemic 
control throughout the study. GMI estimates average glucose 
levels over time, helping assess the effectiveness of insulin 
therapy. As shown in Figure 5, GMI values initially indicated 
higher glucose levels (150 mg/dL in August 2022) due to the 
recent T1D diagnosis and insulin initiation. Over time, GMI 
values decreased consistently, reaching 125 mg/dL by May 
2023, reflecting improved glycemic control and the onset of 
the honeymoon phase.

The most significant reduction in GMI occurred between 
May 2023 and August 2023, with values dropping to 112 
mg/dL. This decline coincided with the identification of 
the honeymoon phase, marked by partial remission and 
decreased insulin needs. From August 2023 to February 
2024, GMI values stabilized between 112-114 mg/dL, 
confirming the phase and enabling precise insulin dose 
adjustments based on CGM data. These results suggest that 
regular GMI monitoring supports effective identification and 
management of the honeymoon phase in T1D.

As detailed in Table 1, insulin dose adjustments reflected 
the fluctuations in insulin needs during the honeymoon 
phase, which is crucial for optimal management of T1D 
in this phase. In the early phase (August 2022 to February 
2023), both average and minimum glucose levels gradually 
decreased, prompting reductions in insulin doses. This trend 
aligned with the onset of the honeymoon phase, where 
partial endogenous insulin production reduced the need for 
exogenous insulin. During the mid-phase (March 2023 to 
July 2023), further insulin reductions were made to address 
occasional hypoglycemic events, marking the peak of the 
honeymoon phase with the lowest insulin requirements. 
In the late phase (August 2023 to February 2024), glucose 
levels and insulin need stabilized, indicating the end of 
the honeymoon phase. These adjustments highlight the 
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importance of real-time monitoring to optimize insulin 
therapy and manage glucose levels effectively, minimizing 
the risks of hypoglycemia and hyperglycemia.

HbA1c Trends and Long-term Glycemic Control

Regular monitoring of HbA1c values provided critical 
insights into long-term glycemic control and its relationship 
with the honeymoon phase. As shown in Table 2, initial 
HbA1c levels of 6.9% in August 2022 decreased steadily to 
5.8% by May 2023, marking the onset of the honeymoon 
phase. The most significant drop occurred by August 2023, 
with HbA1c reaching 5.3%, representing the peak of the 
honeymoon phase. From November 2023 to February 2024, 
HbA1c values stabilized between 5.6% and 5.9%, reflecting 
sustained glycemic control and successful management 
during this period. These findings demonstrate the 
honeymoon phase’s potential to improve long-term 
glycemic control, which is essential for reducing the risk of 
diabetes-related complications.

By August 2023, HbA1c had dropped to 5.3%, aligning with 
the identification of the honeymoon phase-a period of partial 
remission and reduced insulin needs. This phase persisted, 
as reflected in HbA1c values of 5.9% in November 2023 
and 5.6% in February 2024. These trends demonstrate 
the honeymoon phase’s impact on improved glycemic 
control, and highlights the potential for optimizing diabetes 
management in the long term. Regular HbA1c monitoring 
provided essential insights for tailoring treatment strategies, 
ensuring better long-term outcomes. 

The ML models were trained and validated using the 
collected datasets to identify the honeymoon phase, 
focusing on features such as glucose levels, insulin doses, 
glucose variability, hypoglycemic events, and HbA1c values. 
Their performance in detecting the honeymoon phase 
was evaluated based on predictive accuracy, sensitivity, 
specificity, and overall effectiveness, as summarized in 
Table 3.

Table 1. Insulin dose adjustments based on CGM

Patient ID Date Day average glucose (mg/dL) Minimum glucose level (mg/dL) Insulin dose adjustment Notes

1 01.08.2022 150 120 Reduced Slight decrease in insulin

1 01.11.2023 145 115 Reduced Further decrease in 
insulin

1 01.02.2023 132 94 Reduced Hypoglycemia detected

1 15.07.2023 92 57 Reduced Hypoglycemia detected

1 20.07.2023 96 61 Reduced Frequent hypoglycemia

1 25.07.2023 123 82 None Normal glucose levels

1 01.08.2023 127 89 None Normal glucose levels

Table 2. A1c trends and honeymoon phase correlation

Patient ID Date A1c (%) Notes

1 01.08.2022 6.9 Initial report

1 01.11.2022 6.5 Slight decrease

1 01.02.2023 6.2 Continued improvement

1 01.05.2023 5.8 Stable control

1 01.08.2023 5.3 Honeymoon phase noted

1 01.11.2023 5.9 Honeymoon phase continued

1 01.02.2024 5.6 Honeymoon phase continued

Table 3. Performance metrics of machine learning models for identifying the honeymoon phase in type 1 diabetes

Model Accuracy Sensitivity Specificity Precision Recall F1 score

LSTM 88% 85% 90% 86% 85% 85%

Transformer 91% 89% 92% 90% 89% 89%

Random forest 87% 84% 89% 85% 84% 84%

Gradient boosting 89% 86% 91% 88% 86% 87%

LSTM: long short-term memory
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In this study, the LSTM model, trained on daily glucose 
readings, insulin dosages, glucose variability, and 
hypoglycemic events, achieved an accuracy of 88%. It 
identified the honeymoon phase in 88% of test cases, with 
a sensitivity of 85% and specificity of 90%, demonstrating 
its effectiveness in detecting periods of insulin sensitivity 
associated with the honeymoon phase while minimizing 
false positives. 

The transformer model, known for its ability to handle 
complex sequential data through self-attention mechanisms, 
achieved the highest accuracy of 91%. It had a sensitivity 
of 89% and a specificity of 92%, excelling in detecting 
subtle glucose fluctuations and transitions in insulin 
needs indicative of the honeymoon phase. Its capacity to 
process long-range dependencies contributed to its superior 
performance. 

The random forest model achieved an accuracy of 87%, with 
a sensitivity of 84% and specificity of 89%. It effectively 
managed variability and noise in glucose data, distinguishing 
between different phases of diabetes management, making 
it a reliable tool for identifying the honeymoon phase. 

The GBM model achieved an accuracy of 89%, with a 
sensitivity of 86% and a specificity of 91%. It excelled 
at capturing complex, non-linear relationships in CGM 
data, balancing sensitivity and specificity for accurate 
identification of the honeymoon phase.

The comparative analysis of the ML models revealed 
varying strengths in identifying the honeymoon phase in 
T1D, as shown in Figure 6. The transformer model led in 
performance highlighting its superior ability to capture 
complex patterns and long-range dependencies in glucose 
data. It outperformed the LSTM model, which achieved an 
accuracy of 88%, with a sensitivity of 85% and specificity of 

90%. While the LSTM model effectively identified temporal 
dependencies, its slightly lower sensitivity suggests it may 
miss some true honeymoon phase cases, potentially leading 
to delayed insulin adjustments. The random forest achieved 
the next best performance and was strong when managing 
data variability but with slightly reduced sensitivity and 
accuracy compared to the transformer and LSTM models. 
These performance variations underscore the importance 
of model selection based on specific clinical needs, such 
as the need for high sensitivity in early honeymoon phase 
detection.

The GBM model was also effective and excelled in capturing 
non-linear relationships and subtle glucose trends. Overall, 
the transformer model’s ability to handle complex data and 
long-range dependencies provided the most accurate and 
reliable identification of the honeymoon phase, while the 
other models offered valuable insights and robustness in 
different aspects of the analysis.

Discussion

This study demonstrated the potential of ML models, 
particularly the transformer and GBM, to accurately detect 
the honeymoon phase in T1D patients. The models achieved 
high accuracy, with the transformer model reaching 91%, 
suggesting that ML can effectively identify periods of reduced 
insulin requirements and improved glycemic control.

Our findings align with previous research highlighting 
the utility of ML in diabetes management, particularly 
in predicting glucose trends and optimizing insulin 
therapy. However, our study uniquely focused on 
the honeymoon phase, a critical transitional period 
that has been underexplored in prior ML studies 
(21,22,23,24,25,26,27,28,29). While other studies have 

Figure 6. Performance metrics of machine learning models

LSTM: long short-term memory
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explored glucose prediction and long-term management, 
our study is the first to investigate the dynamic insulin 
needs during the honeymoon phase and how ML can 
facilitate its early detection (42,43,44,45).

While the models’ overall performance was promising, 
discrepancies were observed when applied to pediatric 
patients. These discrepancies may be attributed to age-
related variations in insulin sensitivity, growth patterns, and 
puberty, which were not fully accounted for in the models. 
This underlines the need for further research to refine the 
models by incorporating pediatric-specific factors.

Clinical Implications

The high accuracy of these ML models suggests their 
potential for integration into clinical decision support 
systems. Early identification of the honeymoon phase 
allows clinicians to adjust insulin therapy more effectively, 
optimizing glycemic control and reducing the risk of 
hypoglycemia and hyperglycemia. By incorporating real-
time data from CGM, the models can offer personalized 
recommendations for insulin dose adjustments, improving 
overall diabetes management.

Limitations and Future Directions

Despite the promising results, the generalizability of the 
models to pediatric populations remains a limitation. The 
current models were trained on adult data, and further 
studies should focus on validating these models in pediatric 
populations, incorporating factors such as age, pubertal 
insulin resistance, and growth patterns. Future research 
should also explore the integration of genetic factors, 
lifestyle variables, and more granular patient-specific data 
to improve the models’ predictive accuracy.

Recommendations

The insights gained from the ML models offer valuable 
guidance for personalizing insulin management during 
the honeymoon phase of T1D. By accurately identifying 
this phase, clinicians can tailor insulin therapy to better 
align with the patient’s changing insulin needs, optimizing 
glycemic control and reducing the risk of hypoglycemia and 
hyperglycemia.

This study highlights the importance of CGM and other key 
metrics in recognizing the honeymoon phase. Implementing 
a structured monitoring protocol that leverages these findings 
can lead to more effective tracking of glucose levels, insulin 
dosages, and fluctuations, ensuring timely adjustments to 
treatment plans during this transitional period.

It is important to note that pediatric patients may exhibit 
different insulin sensitivity and glucose patterns than 
adults. Therefore, further research is needed to validate the 
applicability of these models in pediatric diabetology. Age-
related insulin sensitivity, growth, and pubertal changes 
may affect the performance of the models in children.

Validation across larger and more diverse patient cohorts is 
essential to ensure the robustness and generalizability of the 
findings. Expanding the dataset will provide clearer insights 
into how well the models perform in varied clinical settings 
and demographics. In addition, refining the ML models by 
incorporating patient-specific factors, genetic information, 
and lifestyle variables will enhance their ability to handle 
complex data patterns. Continuous improvements in 
these models will contribute to more accurate predictions, 
further personalizing care, and ultimately leading to better 
management of T1D during the honeymoon phase.

Conclusion

This study presents a robust ML-driven approach for 
identifying the honeymoon phase in T1D, using a 
comprehensive dataset that included CGM data, GMI 
reports, HbA1c values, and patient medical history. The 
implementation of LSTM networks, transformer models, 
random forest, and GBM has shown potential for accurately 
detecting this critical phase, with model accuracies ranging 
from 87% to 91%. The ML models effectively identified 
the honeymoon phase, enabling more precise insulin 
management and improved glucose control. This approach 
may enhance the optimization of insulin therapy and reduce 
the risk of adverse glycemic events, such as hypoglycemia. 
The successful application of these models underscores 
their potential for integration into clinical practice, offering 
a valuable tool for personalized diabetes management.

Future research should focus on evaluating the long-term 
impact of these ML-driven insulin management strategies 
on patient outcomes. Specifically, exploring how such 
models influence the duration of the honeymoon phase, 
overall glycemic control, and the prevention of diabetes-
related complications could provide valuable insights into 
optimizing care for T1D patients. Moreover, studies exploring 
the real-time adaptation of these models to changing patient 
conditions would be key to enhancing clinical decision-
making. Finally, future work could aim to integrate these 
models into digital health platforms, enabling seamless use 
in clinical settings and expanding access to personalized 
care for a wider patient population.
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