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Machine Learning-driven Identification of the Honeymoon Phase in Pediatric Type 1 Diabetes and
Optimizing Insulin Management
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‘What is already known on this topic?

The honeymoon phase in Type 1 Diabetes (T1D) is characterized by a temporary period of reduced insulin needs and better glucose con
Current methods for identifying this phase rely on clinical observations, but they lack precision and often result in delayed or suboptimal
insulin management.

What this study adds?
This study introduces advanced machine learning models, such as LSTM networks and Transformer models, to accuraf
honeymoon phase in T1D patients. By analyzing CGM data, these models enhance the precision of honeymoon ph:
more personalized insulin management and improved overall glycemic control.

Abstract

management. This study aims to develop and validate a machine learning-driven method for accurately d
insulin therapy and prevent adverse outcomes.

trends and identify the honeymoon phase in T1D patients.
Results: The Transformer model achieved the highest accuracy at 91%, followed by G
and Random Forest at 87%. Key features such as glucose variability, insulin adj nt S
stments, enhancing glucose control and
reducing hypoglycemia risk.

Conclusion: The machine learning-driven approach provides a r
demonstrating potential for improved personalized insulin manage
future research focused on further validation and clinical integration”
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toimmune condition characterized by the destruction of insulin-producing beta cells in the pancreas,
ogenous insulin therapy (1,2). The honeymoon phase is a well-recognized but transient period

1D, where patients experience a temporary remission of symptoms and improved glycemic control (3-5).
retains some residual insulin secretion, reducing the exogenous insulin requirements and stabilizing blood

can last from a few months to over a year and varies significantly among patients (6).

phase presents a clinical challenge, as fluctuating insulin needs complicate management strategies, leading to a

eriod, along with a stable or improving trend in blood glucose levels. Additionally, glucose variability is measured by analyzing the
eviation of CGM readings during this period (8).
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Figure 1. Glucose Levels Classification
Accurate detection of the honeymoon phase is essential for optimizing insulin therapy. Early identification enables h: are providers to
adjust dosages precisely, potentially prolonging the phase and improving patient outcomes (9). Traditiona § , such as
clinical judgment and periodic HbAlc monitoring (Figure 2), often lack the precision required to capture tuations in glucose
levels, leaving a gap in timely and effective management (10-12).

Normal Prediabetes Diabetes
Below 5.7% 5.7% to 6.4% 6.5% or more

Figure 2. Alc Levels for Diagnosing Diabetes
Recent advances in machine learning (ML) techniques offer a promising altep rge datasets to uncover patterns not
apparent through conventional methods (13-15). ML has already demonstr ant, potential in diabetes management, including
predicting glucose trends, optimizing insulin delivery, and perso: S
LSTMs have been employed to predict glucose variability, while carninglapproaches have facilitated personalized insulin
dosing strategies using CGM data (21,22). Machine learning appli ifg'explored for predicting hypoglycemic events and
enhancing artificial pancreas systems (23,24).
This study focuses on applying ML to identify the honeymo, i ts, an area that remains largely unexplored in prior
research. By employing algorithms such as Long Short-Te networks, Transformer models, Random Forest, and
Gradient Boosting Machines, the proposed approach aims limitations of traditional techniques (25-27). The analysis relies
on a comprehensive dataset comprising CGM data alues, and patient medical history, which add credibility and
robustness to the study (28,29).
Building on previous work, this study uniquely oneymoon phase using a data-driven framework. Early and accurate detection
has the potential to personalize insulin the; variability, and extend the duration of partial remission, ultimately

Methods
The dataset for this study was sour
Each site contributed de-identifi
various clinical settings, the stud
robust analysis of the hone
rigorous ethical practi
includes information f

atient confidentiality and adherence to ethical standards. By aggregating data from
ehensive array of patient experiences and glucose management scenarios, facilitating a

in T1D (30). This approach not only enhances the generalizability of the findings but also upholds
tient information throughout the data collection and analysis processes (31). The dataset, which
platform, further supports this by providing a rich resource for developing and validating machine
nsulin management and identifying the honeymoon phase in T1D pediatric patients (32,33).

g'devices were calibrated against a standard glucose meter to ensure accuracy before data collection. Patients
sly, typically on the upper arm or abdomen, providing real-time glucose monitoring. Data was transmitted
cryption and backups ensuring data integrity and patient confidentiality. High-resolution glucose measurements
utes, with monthly GMI reports summarizing long-term control. Patient medical history, including demographics,
istorical glucose data, was comprehensively documented to support detailed analysis (34)

inical data, a publicly available, anonymized diabetic dataset from Kaggle was utilized to validate machine learning models.

time. Each 24-hour period yielded between 96 and 288 data points, critical for analyzing short- and long-term glycemic control (35).
ise GMI reports monitored glucose levels and identified hypoglycemic events, focusing on readings below 70 mg/dL, as shown in
ure 3. This data enabled accurate adjustments to insulin management strategies
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Figure 3: Day-Wise Glucose Management Indicator (GMI) Reports.
Insulin doses were adjusted based on real-time CGM data and day-wise GMI reports to optimize glucose g

Automated Bolus Suggestion (ABS) formula. The ABS formula, applied to each patient
glucose goals, insulin sensitivity, and carbohydrate intake.
HbAlc levels were monitored to reflect long-term glucose control by averaging blood g

glucose control and trends. HbAlc values (38), reflecting the average blood
were used to validate the effectiveness of insulin adjustments and/the oyeral
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t data were anonymized to protect confidentiality and comply with data protection regulations. Institutional Review Board (IRB)

val was obtained for the use of patient data, and informed consent was acquired from the patient for the use of their data in this study.

e dataset from Kaggle was used to supplement the analysis, which contains anonymized data from multiple patients with diabetes, and
was used in compliance with ethical standards for secondary data analysis.

Statistical Analysis

Statistical analysis was performed to evaluate the effectiveness of insulin dose adjustments and glucose management. Descriptive statistics,
including mean, median, standard deviation, and coefficient of variation, were calculated to summarize glucose levels and insulin doses over
the study period. Temporal features such as time-in-range, time-below-range, and time-above-range were computed to evaluate glucose
control. The relationship between insulin doses and glucose levels was assessed using correlation analysis and linear regression. Statistical
significance was determined using p-values, with a threshold set at <0.05 for all tests. This comprehensive analysis helped in understanding
the impact of insulin adjustments on glucose control and identifying patterns indicative of the honeymoon phase in Type 1 Diabetes.



Machine Learning Models
Machine learning models were employed to enhance the identification of the honeymoon phase in Type 1 Diabetes (T1D) pediatric patients
by analyzing data from continuous glucose monitoring (CGM) devices, insulin dosages, glucose variability, and hypoglycemic events. These
models leveraged advanced algorithms to detect patterns and trends indicative of the honeymoon phase, characterized by a temporary
improvement in glycemic control and reduced insulin requirements (39,40).

Rationale for Model Selection:

The selection of machine learning models in this study was based on the unique characteristics of the dataset and the challenges of detecting
the honeymoon phase. LSTM networks were chosen for their ability to capture temporal patterns in sequential CGM data. Transformers,
with their self-attention mechanisms, offer precision in identifying complex relationships between glucose data and insulin adjustments.
Random Forest Classifiers were used for their robustness in handling noisy and diverse datasets, while Gradient Boosting Machines (GBMs)
were selected for their ability to iteratively improve prediction accuracy by identifying subtle patterns in glucose data. This combination of
models ensures a comprehensive approach, leveraging each model’s strengths to address the dataset’s temporal, variable, and noisy natur
(41).

LSTM Networks were utilized for their ability to analyze time-series CGM data effectively, leveraging temporal patterns to identify
significant glucose trends. Their memory cells and gating mechanisms allow them to focus on relevant patterns while filtering out noi
optimizing insulin adjustments based on real-time glucose trends (21,42).
Transformers were applied to capture intricate patterns in glucose fluctuations and insulin adjustments using self-attention,
These models excel in preserving sequence order through positional encoding, enabling precise long-term trend interpretat;
supporting personalized insulin management (25,43).

Random Forest Classifiers handled the diversity and noise in glucose data by constructing multiple decision trees
predictions. This ensemble technique reduces overfitting and accommodates variations in glucose measurements a
enhancing classification robustness (26,44).

Gradient Boosting Machines (GBMs) were employed for their ability to model complex relationships a
By capturing subtle patterns in CGM data, GBMs improve accuracy and reliability in identifying the ho;
more personalized and effective treatment strategies (27-45).

of the honeymoon phase while minimizing false positives and negatives. These models ¢
glucose patterns, supporting tailored insulin management for T1D patients (46).
Results

The honeymoon phase in Type 1 Diabetes (T1D) was identified through a comprehensi the patient's lonigitudinal glucose data,
insulin dose adjustments, and ABS (Average Blood Sugar) reports. This section detail: identifying the honeymoon phase,
characterized by a temporary period where residual beta-cell function leads to improved ol and a reduced need for exogenous
insulin.

Glycemic Control and Insulin Adjustments
The Glucose Management Indicator (GMI) trends provided essenti
average glucose levels over time, helping assess the effectiveness
higher glucose levels (150 mg/dL in August 2022) due to the rece
consistently, reaching 125 mg/dL by May 2023, reflecting impr:

control throughout the study. GMI estimates
wn in Figure 5, GMI values initially indicated
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Figure 5. Gluc a dicator (GMI) Trends Over Time

i I occurred between May 2023 and August 2023, with values dropping to 112 mg/dL. This decline
ation of the honeymoon phase, marked by partial remission and decreased insulin needs. From August 2023 to
stabilized between 112-114 mg/dL, confirming the phase and enabling precise insulin dose adjustments based

s suggest that regular GMI monitoring supports effective identification and management of the honeymoon phase

¢ to address occasional hypoglycemic events, marking the peak of the honeymoon phase with the lowest insulin requirements. In the
ase (August 2023 to February 2024), glucose levels and insulin need stabilized, indicating the end of the honeymoon phase. These
ustments highlight the importance of real-time monitoring to optimize insulin therapy and manage glucose levels effectively, minimizing
e risks of hypoglycemia and hyperglycemia.

Table 1: Insulin Dose Adjustments Based on CGM

Patient Date Day Average Minimum Glucose Insulin Dose

D Glucose (mg/dL) Level (mg/dL) Adjustment Notes




1 01-08-2022 150 120 Reduced Slight decrease in insulin

1 01-11-2023 145 115 Reduced Further decrease in insulin
1 01-02-2023 132 94 Reduced Hypoglycemia detected
1 15-07-2023 92 57 Reduced Hypoglycemia detected

1 20-07-2023 96 61 Reduced Frequent hypoglycemia

1 25-07-2023 123 82 None Normal glucose levels
1 01-08-2023 127 89 None Normal glucose le

Alc Trends and Long-Term Glycemic Control
Regular monitoring of Alc values provided critical insights into long-term glycemic control and its relationship
As shown in Table 2, initial Alc levels of 6.9% in August 2022 decreased steadily to 5.8% by May 2023, marking
honeymoon phase. The most significant drop occurred by August 2023, with Alc reaching 5.3%, representj e honeymoon
phase. From November 2023 to February 2024, Alc values stabilized between 5.6% and 5.9%, reflecting
successful management during this period. These findings demonstrate the honeymoon phase’s potenti
control, which is essential for reducing the risk of diabetes-related complications.

Table 2: Alc Trends and Honeymoon Phase Correlation

Patient ID Date Ale (%) Note:

1 01-08-2022 6.9 Initial R

1 01-11-2022 6.5 de

1 01-02-2023 6.2 tifled improvement

1 01-05-2023 58 tal ontrol

1 01-08-2023 Honeymoon phase noted

1 01-11-2023 Honeymoon phase continued
1 01-02-2024 Honeymoon phase continued

By August 2023, Alc had dropped to 5.3%, alig
reduced insulin needs. This phase persiste,

efidlentification of the honeymoon phase—a period of partial remission and
values of 5.9% in November 2023 and 5.6% in February 2024. These trends
emic which highlights its potential to optimize diabetes management in the
sights for tailoring treatment strategies, ensuring better long-term outcomes.
validated using the collected datasets to identify the honeymoon phase, focusing on features
riability, hypoglycemic events, and Alc values. Their performance in detecting the

€ accuracy, sensitivity, specificity, and overall effectiveness, as summarized in Table 3.

long term. Regular Alc monitoring
The machine learning models wer
such as glucose levels, insulin
honeymoon phase was evaluated

Table 3 Performance chine Learning Models for Identifying the Honeymoon Phase in Type 1 Diabetes

Model Sensitivity Specificity Precision Recall F1 Score
LSTM % 85% 90% 86% 85% 85%
1% 89% 92% 90% 89% 89%
87% 84% 89% 85% 84% 84%
89% 86% 91% 88% 86% 87%

Long Short-Term Memory (LSTM) network, a type of recurrent neural network (RNN), was used to analyze time-series data from

ntinuous glucose monitoring (CGM) devices. LSTM networks excel in retaining information over extended periods, making them well-
suited for capturing temporal dependencies in glucose trends. In this study, the LSTM model, trained on daily glucose readings, insulin
dosages, glucose variability, and hypoglycemic events, achieved an accuracy of 88%. It identified the honeymoon phase in 88% of test
cases, with a sensitivity of 85% and specificity of 90%, demonstrating its effectiveness in detecting periods of insulin sensitivity associated
with the honeymoon phase while minimizing false positives.
The Transformer model, known for its ability to handle complex sequential data through self-attention mechanisms, achieved the highest
accuracy of 91%. It had a sensitivity of 89% and a specificity of 92%, excelling in detecting subtle glucose fluctuations and transitions in
insulin needs indicative of the honeymoon phase. Its capacity to process long-range dependencies contributed to its superior performance.
The Random Forest model, an ensemble learning method, achieved an accuracy of 87%, with a sensitivity of 84% and specificity of 89%. It



effectively managed variability and noise in glucose data, distinguishing between different phases of diabetes management, making it a
reliable tool for identifying the honeymoon phase.

The Gradient Boosting Machine (GBM) model, known for its stage-wise predictive modeling, achieved an accuracy of 89%, with a
sensitivity of 86% and a specificity of 91%. It excelled at capturing complex, non-linear relationships in CGM data, balancing sensitivity
and specificity for accurate identification of the honeymoon phase.

The comparative analysis of the machine learning models reveals varying strengths in identifying the honeymoon phase in Type 1 Diabetes
(T1D), as shown in Figure 6. The Transformer model led in performance with an accuracy of 91%, sensitivity of 89%, and specificity of
92%, highlighting its superior ability to capture complex patterns and long-range dependencies in glucose data. This makes the Transformer
model particularly effective in identifying subtle glucose fluctuations that indicate the onset of the honeymoon phase. It outperformed the
LSTM model, which achieved an accuracy of 88%, with a sensitivity of 85% and specificity of 90%. While the LSTM model effectively
identified temporal dependencies, its slightly lower sensitivity suggests it may miss some true honeymoon phase cases, potentially leading to
delayed insulin adjustments. The Random Forest model followed with an accuracy of 87%, sensitivity of 84%, and specificity of 89%,
showing strong performance in managing data variability but with slightly reduced sensitivity and accuracy compared to the Transfo:

and LSTM models. These performance variations underscore the importance of model selection based on specific clinical needs, such

need for high sensitivity in early honeymoon phase detection.

2% —e
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88% 88%
88% 87% 87%
86% 86%

86% 85% 85%

84%
84%
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Figure 6. Performance Metrics of Machine Learning Models
The Gradient Boosting Machine (GBM) achieved an accuracy of 89%, sens B6%gand specificity of 91%, excelling in capturing
non-linear relationships and subtle glucose trends. Overall, the T
dependencies provided the most accurate and reliable identificatio
insights and robustness in different aspects of the analysis.
Discussion

This study demonstrates the potential of machine learning
detect the honeymoon phase in Type 1 Diabetes (T1D) pati
91%, suggesting that machine learning can effectively iden
Our findings align with previous research highlighti :
glucose trends and optimizing insulin therapy.
that has been underexplored in prior machine le;
management, our study is the first to inve
facilitate its early detection [42-45].
While the models' overall performa;

Is achieved high accuracy, with the Transformer model reaching
educed insulin requirements and improved glycemic control.

quely focuses on the honeymoon phase, a critical transitional period
1-29]. While other studies have explored glucose prediction and long-term
sulin needs during the honeymoon phase and how machine learning can

repancies were observed when applied to pediatric patients. These discrepancies
ulin sensitivity, growth patterns, and puberty, which were not fully accounted for in the

models. This underlines the nee ch to refine the models by incorporating pediatric-specific factors.
Clinical Implications
The high accuracy of thes ing models suggests their potential for integration into clinical decision support systems. Early

s clinicians to adjust insulin therapy more effectively, optimizing glycemic control and reducing

the risk of hypoglyce ycemia. By incorporating real-time data from continuous glucose monitoring (CGM), the models can
offer personaliz for insulin dose adjustments, improving overall diabetes management.

Limitations

Despite the , the generalizability of the models to pediatric populations remains a limitation. The current models were

rther studies should focus on validating these models in pediatric populations, incorporating factors such as age,
and growth patterns. Future research should also explore the integration of genetic factors, lifestyle variables, and

highlights the importance of continuous glucose monitoring (CGM) and other key metrics in recognizing the honeymoon phase.
enting a structured monitoring protocol that leverages these findings can lead to more effective tracking of glucose levels, insulin
ages, and fluctuations, ensuring timely adjustments to treatment plans during this transitional period.

is important to note that pediatric patients may exhibit different insulin sensitivity and glucose patterns than adults. Therefore, further
research is needed to validate the applicability of these models in pediatric diabetology. Age-related insulin sensitivity, growth, and pubertal
changes may affect the performance of the models in children.

Validation across larger and more diverse patient cohorts is essential to ensure the robustness and generalizability of the findings. Expanding
the dataset will provide clearer insights into how well the models perform in varied clinical settings and demographics. Additionally,
refining the machine learning models by incorporating patient-specific factors, genetic information, and lifestyle variables will enhance their
ability to handle complex data patterns. Continuous improvements in these models will contribute to more accurate predictions, further
personalizing care, and ultimately leading to better management of T1D during the honeymoon phase.

Conclusion



This study presents a robust machine learning-driven approach for identifying the honeymoon phase in Type 1 Diabetes (T1D), utilizing a
comprehensive dataset that includes continuous glucose monitoring (CGM) data, Glucose Management Indicator (GMI) reports, HbAlc
values, and patient medical history. The implementation of Long Short-Term Memory (LSTM) networks, Transformer models, Random
Forest, and Gradient Boosting Machines has shown significant potential in accurately detecting this critical phase, with model accuracies
ranging from 87% to 91%. By incorporating key features such as glucose variability, insulin adjustments, and HbAlc levels, the machine
learning models eftectively identify the honeymoon phase, enabling more precise insulin management and improved glucose control. This
approach enhances the optimization of insulin therapy and reduces the risk of adverse glycemic events, such as hypoglycemia. The
successful application of these models underscores their potential for integration into clinical practice, offering a valuable tool for
personalized diabetes management.

Future research should focus on evaluating the long-term impact of these machine learning-driven insulin management strategies on patient
outcomes. Specifically, exploring how such models influence the duration of the honeymoon phase, overall glycemic control, and the
prevention of diabetes-related complications could provide valuable insights into optimizing care for T1D patients. Additionally, studies
exploring the real-time adaptation of these models to changing patient conditions would be crucial in enhancing clinical decision-maki
Finally, future work could aim to integrate these models into digital health platforms, enabling seamless use in clinical settings and
expanding access to personalized care for a wider patient population.
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