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Abstract  
Idiopathic hypogonadotropic hypogonadism (IHH) comprises a group of disorders characterized by deficient secretion or action of 
gonadotropin-releasing hormone (GnRH), leading to impaired pubertal development and infertility. Traditionally, IHH is classified into 
Kallmann syndrome (KS), associated with anosmia, and normosmic IHH (nIHH), in which olfactory function is preserved. The condition 
exhibits marked genetic heterogeneity. Advances in next generation sequencing have significantly expanded the genetic landscape of IHH, 
with pathogenic variants identified in over 60 genes, accounting for up to 50% of cases. Oligogenic inheritance is increasingly recognized, 
occurring in 10-20% of individuals. The potential for spontaneous or treatment-induced clinical recovery in a subset of patients, along with 
phenotypic overlap with constitutional delay of growth and puberty (CDGP), presents additional diagnostic challenges. Despite these 
complexities, genetic studies of IHH have provided critical insights into fundamental neuroendocrine processes, most notably the recent 
elucidation of the KNDy (Kisspeptin, Neurokinin B, Dynorphin) neurons as the GnRH pulse generator. These discoveries have also 
informed the development of targeted therapies, exemplified by the recent FDA approval of fezolinetant, a neurokinin B receptor antagonist, 
for the treatment of menopausal vasomotor symptoms. 
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1. Introduction 
In vertebrates, GnRH (Gonadotropin Releasing Hormone)-secreting neurons develop outside the central nervous system, originating from the 
nasal placode. They migrate along olfactory-derived vomeronasal axons to their final location in the hypothalamus (1).  
The activity of the hypothalamic-pituitary-gonadal axis demonstrates significant variability across the human lifespan (2). During early 
adolescence, a gradual reactivation of this neuroendocrine axis initiates the development of secondary sexual characteristics and the 
maturation of the reproductive system, marking the onset of puberty. This complex developmental process typically starts around 10 to 11 
years of age in girls and boys respectively and spans from two to five years. Epidemiologic data suggest that approximately 50% to 75% of 
the variation in the age at onset of puberty is influenced by genetics (3). The failure to undergo pubertal progression results in sexual 
immaturity and infertility, a clinical state referred to as hypogonadism. When this condition arises from anatomical malformations or 
functional impairments that compromise the secretion of gonadotropin-releasing hormone or the subsequent release of pituitary 
gonadotropins, it is specifically classified as hypogonadotropic hypogonadism. 
2. Idiopathic Hypogonadotropic Hypogonadism  
The term idiopathic hypogonadotropic hypogonadism (IHH) refers to a condition characterized by delayed or absent sexual maturation due 
to deficient secretion or action of gonadotropin-releasing hormone, in the absence of any identifiable anatomical or functional cause. IHH is 
traditionally categorized into two main forms: Kallmann syndrome, which is associated with anosmia or hyposmia, and normosmic 
idiopathic hypogonadotropic hypogonadism (nIHH), in which olfactory function remains intact. IHH may be either congenital or acquired, 
with congenital cases comprising the majority of those that have a hereditary basis. In female individuals, clinical signs typically do not 
become evident until the early adolescent years. In contrast, male infants may exhibit signs of reproductive dysfunction at birth due to the 
critical activity of the hypothalamic-pituitary-gonadal (HPG) axis between the sixteenth and twenty-second weeks of gestation, a period 
during which androgen production is essential for the proper virilization of the male fetus with a 46,XY karyotype. As a result, congenital 
IHH in males may present with micropenis and/or undescended testes (cryptorchidism) at birth. In some cases, the degree of under-
virilization is sufficient to warrant evaluation for a “disorder of sexual development”. The brief reactivation of the hypothalamic-pituitary-
gonadal axis during early infancy—commonly referred to as "minipuberty", occurring approximately between four and sixteen weeks of 
life—presents a critical diagnostic window during which both male and female infants with congenital IHH can be identified (4).  
KS is typically attributed to aberrant embryonic development and/or disrupted migration of gonadotropin-releasing hormone (GnRH)-
secreting neurons. During embryogenesis, these GnRH neurons originate from the nasal placode and migrate along olfactory axons to reach 
the hypothalamus. Consequently, the close developmental association between GnRH and olfactory neurons underlies the characteristic 
clinical presentation of hypogonadotropic hypogonadism (HH) accompanied by anosmia or hyposmia. In addition to reproductive and 
olfactory deficits, individuals with KS frequently exhibit a spectrum of non-reproductive congenital anomalies, including cleft palate, 
unilateral renal agenesis, limb malformations such as split hand/foot malformation and shortened metacarpals, sensorineural hearing loss, and 
mirror movements (synkinesia) (5). In contrast nIHH refers to those IHH cases in which patients have an intact sense of smell (6). nIHH 
arises from dysfunction of the GnRH neurons that are properly located within the hypothalamus. These cases typically lack any associated 
congenital anomalies.  
Caution is warranted when employing the classifications of KS and nIHH, as the distinction between these entities can be ambiguous. This is 
exemplified by mutations in the FGFR1 gene, which could be associated with either phenotype. Mutations in CCDC141 or IGSF10, although 
typically associated with nIHH, have been shown in vitro to impair the migration of GnRH neurons—an abnormality more commonly linked 
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to the KS phenotype. These findings underscore the complexity of the underlying molecular mechanisms and challenge the traditional 
dichotomy between KS and nIHH (7, 8). 
Pubertal delay is the most typical presentation of IHH. Pubertal delay is defined as absence of breast development (Tanner breast stage 1) in 
a girl at age 13 or failure to achieve a testicular volume of 4 mL in a boy by age 14 (9). By far the most common cause of delayed puberty is 
constitutional delay in growth and puberty (CDGP) also known as self-limited delayed puberty (SLDP), which is not a disease per se but a 
maturational delay in development at the extreme of the population standards. CDPG accounts for pubertal delay in two third of boys and 
one third of girls (10). As CDGP is a diagnosis of exclusion, it must be carefully considered in the differential diagnosis of IHH. 
Differentiating between these two conditions frequently necessitates prolonged clinical observation and extensive diagnostic evaluation. 
Studies have shown that some variants in established puberty-related genes, including TAC3 and TACR3, are present in both individuals with 
nIHH and those with CDGP within the same families. These findings suggest that CDGP may represent a milder, transient manifestation of 
the same genetic defect underlying IHH, indicating a shared pathophysiological continuum between the two conditions (11). Clinicians often 
initiate a low-dose sex steroid regimen to “jump-start” pubertal development in patients suspected of having CDGP. It is now well 
established that approximately 10-20% of individuals with IHH experience clinical recovery, occurring either spontaneously or, more 
commonly, following sex steroid replacement therapy (12, 13). These observations suggest that CDGP and IHH may share underlying 
pathophysiological mechanisms. This supports the concept of a phenotypic continuum ranging from normal pubertal timing to severe forms 
of IHH, with CDGP representing an intermediate point along this spectrum. On the other hand, a recent study found that the common genetic 
variants associated with pubertal timing in the general population contribute substantially to the genetic basis of CDGP, but only minimally 
to that of IHH (14). Furthermore, a more recent study involving 71 CDPG subjects revealed no mutations in genes associated with nIHH, 
such as GNRHR, TAC3, and TAC3R. This study revealed new candidate genes for CDGP, most notably INHBB, encoding the beta B subunit 
of inhibin, which is associated with age at menarche (15). In yet another study MC3R loss-of-function variants were overrepresented in 
patients with CDGP in comparison to IHH (16). Collectively, these recent studies suggest that the genetic architecture underlying CDGP and 
IHH may be distinct.  
Currently identified genetic defects explain up to 50% of all IHH cases (5, 17). To date, mutations in nearly 60 genes have been implicated in 
the pathogenesis of IHH. A comprehensive list of currently known IHH-associated genes is presented in Table 1. In a subset of patients or 
pedigrees, more than one pathogenic variant in different IHH-associated genes is identified, a phenomenon referred to as oligogenic 
inheritance or etiology. This mode of inheritance is estimated to account for 10–20% of all IHH cases (18-21). With the increased application 
of comprehensive, unbiased genetic approaches such as whole exome sequencing (WES), it has become evident that oligogenic inheritance is 
more prevalent in Mendelian disorders than previously recognized (22).  
From the diagnostic point of view designing a panel of genes for targeted exome sequencing may prove to be practical in aiding timely 
differential diagnosis of delayed puberty. Such gene panels may prioritize genes more commonly implicated in patients with IHH or CDGP, 
and in our view, should at minimum include FGFR1, ANOS1, CHD7, PROKR2, GNRHR, KISS1R, TAC3, TACR3, FGF8, FGF17, PROK2, 
CCDC141, SEMA3A, IGSF10, INHBB, MC3R, and IL17RD (5, 15, 16, 23, 24).  
3. Genes associated with Idiopathic Hypogonadotropic Hypogonadism  
3.a. Kallmann syndrome (KS) associated genes 
X-linked recessive, autosomal dominant (AD), and autosomal recessive (AR) inheritance patterns have all been described in association with 
KS. However, KS frequently occurs as a sporadic condition. Even in familial cases, considerable intrafamilial phenotypic variability is 
commonly observed, with individuals harboring the same genetic mutation exhibiting a wide range of clinical manifestation (25-27). Based 
on the presence of specific associated clinical features, genetic screening can be prioritized for particular gene(s): synkinesia (ANOS1), dental 
agenesis (FGF8/FGFR1), digital bony abnormalities (FGF8/FGFR1) and hearing loss (CHD7, SOX10) (28). A shared pathophysiological 
mechanism among genes implicated in KS involves the interaction of fibroblast growth factor signaling, prokineticin signaling, and 
Anosmin-1 with heparan sulfate glycosaminoglycan moieties within extracellular signaling complexes. These interactions are thought to 
facilitate the proper migration of GnRH neurons during embryonic development (29, 30).  
ANOS1 
The first gene identified as causative for KS is ANOS1 (31). Formerly known as KAL1 it is located on the short arm of the X chromosome 
(Xp22.3) (OMIM: 300836) (32). Ten to 20 percent of males with KS carry ANOS1 mutations or intragenic microdeletions are present (33, 
34). The extracellular glycoprotein it encodes, anosmin-1, plays a role in the adhesion of GnRH cells and axon migration during 
organogenesis (35). Anomin-1 exerts its biological effects mainly through signal modulation of fibroblast growth factor receptor 1 (FGFR1) 
via its third fibronectin-like type 3 (FnIII) domain and the N-terminal region (36). The migratory defect of olfactory and GnRH neurons is 
the central mechanism underlying the clinical features of ANOS1 mutations (37). In its first observation, in a 19-week-old male human fetus 
with a deletion in ANOS1, GnRH neurons could not migrate to their normal positions in the brain (38). In KS cases associated with ANOS1 
mutations penetrance has been reported to be almost complete (39, 40). Additional clinical findings include bimanual synkinesis, unilateral 
renal agenesis, vas deferens agenesis, and deafness (28, 41).  
FGFR1, FGF8 and related genes (FGF17, IL17RD, DUSP6, SPRY4, FLRT3, and KLB) 
FGFR1 encodes a receptor belonging to the tyrosine kinase superfamily. It regulates central developmental processes such as neuronal 
proliferation, differentiation, and migration critical for embryonic development. FGFR1 is the first gene whose mutations were identified for 
the AD form of KS (42). However, over time, FGFR1 has also been found to be associated with nIHH (43, 44). Around 10% of patients with 
KS were found to have inactivating mutations in FGFR1 (29, 43, 45). Loss-of-function mutations in FGFR1 were detected in 7% of 134 
nIHH patients (46). To date numerous insertions/deletions, missense, and nonsense mutations have been reported with AD, AR, de novo, and 
oligogenic inheritance (29, 47, 48). Loss of FGFR1 function elicit reproductive abnormalities ranging from severe AD KS through fully 
penetrant nIHH to delayed puberty (43-45, 49, 50). FGFR1 mutations have been associated with cleft palate, mirror movement, and tooth 
agenesis, and asymptomatic carriers have been reported in some familial cases (5, 51). 
FGF8 (fibroblast growth factor 8) and FGF17 (fibroblast growth factor 17) are FGFR1 ligands with similar sequence structures that play a 
role in GnRH neuron ontogenesis. Their mutations have been reported in IHH patients with varying olfactory functions (52, 53). Mice 
homozygous for the hypomorphic Fgf8 allele exhibited absent olfactory bulbs and lacked GnRH neurons in the hypothalamus (52). IHH 
patients harboring FGF8 variants have also been reported to exhibit additional phenotypic features, including cleft lip and/or palate, a flat 
nasal bridge, and camptodactyly (54, 55). Further screening for FGF8 related genes in a group of 388 congenital IHH patients revealed 
inactivating variants in FGF17, IL17RD, DUSP6, SPRY4, and FLRT3 (53). 
KLB encodes β-Klotho, a co-receptor essential for FGF21 signaling via FGFR1. In one study, over 300 IHH patients were screened, 
identifying 13 individuals with loss-of-function KLB variants. Most of these patients exhibited metabolic abnormalities, including insulin 
resistance or dyslipidemia. Notably, Klb knockout mice displayed a milder hypogonadal phenotype compared to the human presentation 
(56).  
HS6ST1 
HS6ST1 (heparan sulfate 6-O-sulfotransferase 1) is directly involved in the sulfation of heparan sulfate proteoglycans, which are critical 
modulators of FGF signaling. The 6-O-sulfation of heparan sulfate chains, catalyzed by HS6ST1, is required for optimal binding and 

UNCORRECTED PROOF



3 

 

activation of FGF ligands (such as FGF8 and FGF17) to their receptor FGFR1 (57). This interaction is essential for the development, 
migration, and survival of GnRH neurons during embryogenesis. Mutations in HS6ST1, often co-occurring with variants in other known KS 
genes, have been reported in seven families (58). 
PROKR2 and PROK2 
PROK2 and PROKR2 encode prokineticin 2, an 81-amino acid peptide, and its G protein-coupled receptor, respectively. Both play critical 
roles in the development of neuronal precursors and are essential for processes such as olfactory bulb morphogenesis and sexual maturation 
(59). This ligand–receptor pair has been identified as a strong candidate for the pathogenesis of KS as Prok2 (60, 61) or Prokr2 knockout 
mice had defective olfactory bulbs and failed migration of GnRH neurons (62). Subsequent studies identified inactivating variants in 
PROKR2 and PROK2 in patients with KS. The majority of these mutations have been identified in the heterozygous state, although both 
homozygous and compound heterozygous variants have also been reported (63). Patients with PROK2 or PROKR2 mutations have 
considerable phenotypic variability (61, 64, 65), ranging from KS to nIHH. A variety of associated clinical features has been reported in 
affected individuals, including fibrous dysplasia, synkinesia, epilepsy, and Crohn’s disease (66). Mutations in PROKR2 and PROK2 are 
frequently identified in combination with variants in other genes, supporting an oligogenic mode of inheritance in IHH. 
CHD7 
CHARGE syndrome is a multisystem disorder that includes Coloboma, Heart anomalies, choanal Atresia, growth Retardation, Genital 
defects and Ear anomalies (67). CHD7 mutations are present in the majority of patients with CHARGE syndrome. CHD7 is a chromatin-
remodeling protein essential for the ontogeny of GnRH neurons and the proper targeting of olfactory axons during embryogenesis. 
Pathogenic CHD7 mutations disrupt these developmental processes, resulting in a reduced number of hypothalamic GnRH neurons and 
defective GnRH secretion. There is a range of abnormalities in the GnRH neuron migration pathway in mice with Chd7 deficiency (68, 69). 
While large de novo deletions are noted in classical CHARGE syndrome patients, point mutations inherited or de novo may result in 
KS/nIHH (48, 70, 71). Thus, IHH patients should be carefully examined for possible clinical features of CHARGE syndrome such as 
abnormal ears, deafness, semicircular canal hypoplasia, and coloboma (67).  
WDR11 
WDR11 in partnership with EMX1, a homeodomain transcription factor, is essential for normal Hedgehog (Hh) signaling and ciliogenesis, 
both of which are critical for the embryonic development and migration of GnRH neurons. Mutations in WDR11 disrupt Hh pathway 
signaling, impairing the formation and function of primary cilia, which are required for the proper migration of GnRH and olfactory neurons 
(72). By positional cloning, heterozygous mutations were discovered in several patients with KS (73).  
CCDC141 
CCDC141 encodes a coiled-coil domain containing protein that is expressed in GnRH neurons. We have reported inactivating CCDC141 
variants in four separate families with IHH. Affected individuals exhibit normal olfaction and anatomically normal olfactory bulbs (74). In a 
rodent nasal explant model, knockdown of Ccdc141 led to impaired embryonic migration of GnRH neurons without affecting olfactory axon 
outgrowth, thereby producing a nIHH phenotype distinct from other genes implicated in GnRH neuronal migration (7). CCDC141 Mutations 
have been identified as a recurrent finding in individuals with CDGP. Among a cohort of 193 patients with CDGP, 21 individuals (6%) were 
found to carry predicted deleterious variants in CCDC141 (75).   
FEZF1 

The protein product of FEZF1 facilitates the penetration of olfactory receptor neuron axons through the basal lamina of the central nervous 
system in murine models. As a subset of these axons serves as a migratory scaffold for GnRH neurons, FEZF1 deficiency results in failed 
entry of GnRH neurons into the brain.(76, 77). Through autozygosity mapping and WES of 30 individuals with KS, we discovered 
homozygous loss-of-function mutations in FEZF1 in two separate consanguineous families, each with two affected siblings (78). FEZF1 
mutations are apparently extremely rare as no new KS cases have been reported yet. 
IGSF10 
IGSF10, a member of the immunoglobulin superfamily, was implicated in delayed puberty by Howard et al., who analyzed WES data from 
over 100 affected individuals and identified pathogenic mutations in six families (8). Knockdown studies demonstrated reduced GnRH 
neuronal migration in the GN11 cell line. Despite this impaired migration, patients harboring IGSF10 mutations exhibited a normal sense of 
smell. The authors proposed that a reduced number or delayed arrival of GnRH neurons to the hypothalamus results in a milder disruption of 
the GnRH neuronal network, manifesting as delayed puberty rather than permanent IHH. Notably, IGSF10 mutations were also identified in 
adults with functional hypothalamic amenorrhea, a condition considered a mild and reversible form of HH (8). 
SEMA3A and related genes (SEMA3E, SEMA3G, SEMA3F, PLXNA1, PLXNA3 etc) 
The precise targeting of GnRH neurons and olfactory/vomeronasal projections relies on the coordinated activity of axonal guidance cues, 
including semaphorins—a large and heterogeneous family of secreted and membrane-bound proteins (79). Mutations in class-3 semaphorin 
family members, including SEMA3A, SEMA3E, and SEMA3G, have been implicated in the pathogenesis of IHH (80-82). SEMA3 proteins 
exert their biological functions by binding to Neuropilin co-receptors, forming heteromeric complexes with PlexinA1–4 (PLXNA1–4) 
receptors, thereby initiating plexin-mediated signal transduction pathways (83). Nonsynonymous heterozygous variants in PLXNA1 have 
been identified in KS individuals (84).  More recently we have identified deleterious variants in SEMA3F and PLXNA3 to cause IHH (85).  
SEMA3F and PLXNA3 
SEMA3F and its coreceptor PLXNA3 play a role in cell migration and axonal guidance (86). Whole exome sequencing of 216 patients with 
IHH identified rare SEMA3F and PLXNA3 variants in 15 individuals. Over half (54%) also carried mutations in other known IHH genes, 
highlighting the disorder’s oligogenic nature. SEMA3F variants followed autosomal dominant inheritance with variable penetrance, while 
PLXNA3 variants were X-linked recessive. Six patients exhibited impaired olfaction. The study provides clinical, genetic, and cellular 
evidence supporting the role of SEMA3F signaling deficiency in IHH pathogenesis (85). 
PLXNA1 
Plexin-A1, a transmembrane coreceptor for semaphorin 3 signaling, is encoded by PLXNA1 (87). Heterozygous PLXNA1 variants were 
identified in 15 of 237 unrelated patients with KS, and impaired plexin-A1 signaling has been linked to oligogenic inheritance in KS (84). 
Subsequently, by screening the WES data of 215 IHH patients, we identified rare heterozygous PLXNA1 variants in KS and nIHH patients 
carrying additional variants in known IHH genes. Thus, the contribution of PLXNA1 to the oligogenicity of both forms of IHH was 
confirmed (88). 
PLXNB1 
The receptor for semaphorin 4D, plays a critical role in GnRH neuronal development. In murine models, disruption of Sema4D/PLXNB1 
signaling results in abnormal GnRH ontogeny. In a cohort of 336 patients with IHH, we were able to detect six rare PLXNB1 variants in eight 
individuals with the nIHH (89). 
SMCHD1 
SMCHD1 encodes an epigenetic repressor that is expressed in the human olfactory epithelium. Shaw et al identified inactivating mutations in 
SMCHD1 as the underlying cause of congenital arhinia in 41 cases. Notably, 97% of affected individuals also exhibited hypogonadal 
features—including cryptorchidism, microphallus, or amenorrhea—alongside absent olfactory structures and anosmia (90).  
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SOX10 
Inactivating mutations in SOX10 are responsible for Waardenburg syndrome, a rare condition marked by pigmentation defects and 
sensorineural hearing loss. In a subset of KS patients presenting with deafness, SOX10 mutations were identified in about one-third of cases. 
Consistent with these findings, Sox10 knockout mice exhibit a complete absence of olfactory ensheathing cells along the olfactory nerve 
pathway, highlighting the gene’s critical role in olfactory system development (91). A large cohort study of 1309 IHH patients reported that 
developmental problems due to  SOX10 variants may encompass a phenotypic line from KS to nIHH (92). 
SOX2  
SOX2 encodes the SRY-related HMG-box 2 transcription factor protein. A study involving eight IHH patients with heterozygous SOX2 
variants who had severe eye defects found that pathogenic SOX2 variants were linked to both anosmic and normosmic forms of IHH. 
Functional analyses indicated that Sox2 was highly expressed in the hypothalamus of adult mice. The study emphasized that screening for 
SOX2 variants should be performed in patients, regardless of the presence of ocular defects, when conducting genetic evaluations for IHH 
(93). 
NDNF 
NDNF is a secreted neurotrophic factor involved in the migration of GnRH neurons and is a member of the fibronectin type III (FN3) 
superfamily. Screening for rare variants in FN3 domain–containing proteins identified three protein-truncating and one missense 
heterozygous NDNF variant among patients with KS. In Ndnf-null mice, a reduced number of GnRH neurons reached their final destination 
compared to wild-type Ndnf+/+ mice (94). More recently, we identified a homozygous protein-truncating variant in NDNF in a 
consanguineous family with KS, highlighting that, in addition to the previously described dominant inheritance, NDNF-related disease can 
also follow an autosomal recessive pattern (95). 
AMH and AMHR2 
AMH is expressed in migrating GnRH neurons in mouse and human fetuses during embryonic development and functions as a promotility 
factor (96). Amhr2-deficient mice exhibit aberrant development of the peripheral olfactory system and impaired embryonic migration of 
GnRH neurons. In humans, heterozygous inactivating variants in AMH or AMHR2 have been associated with IHH. These findings 
underscore the critical role of AMH/AMHR2 signaling in GnRH neuronal migration and its contribution to the pathogenesis of IHH (97). 
AXL 
AXL receptor tyrosine kinases, members of the TAM (TYRO3/AXL/MERTK) family, play a role in GnRH neuron migration and survival. 
Studies of sexual maturation in Axl null mice reported that TAM function was impaired (98). AXL variants have been identified in both 
anosmic and normosmic IHH probands. 
NTN1 
Netrin-1, encoded by the NTN1 gene, plays a crucial role in central nervous system development by guiding axonal and neuronal migration 
through its receptor DCC. In Dcc⁻/⁻ and Ntn1⁻/⁻ mouse embryos, GnRH neurons exhibited aberrant trajectories and failed to reach the medial 
preoptic area, highlighting the importance of NTN1/DCC signaling in proper GnRH neuronal migration (99, 100). Whole exome sequencing 
of a cohort of 133 individuals with IHH identified pathogenic variants in NTN1 and its receptor DCC. Five heterozygous DCC variants were 
detected in six probands—five with KS and one with nIHH. Additionally, co-occurring variants in both DCC and NTN1 were identified in 
two KS patients, supporting an oligogenic basis for disease pathogenesis (101). 
 
3.b. Normosmic idiopathic hypogonadotropic hypogonadism (nIHH) associated genes  
Genes implicated in nIHH are particularly informative for understanding the regulation of the HPG axis and the timing of puberty. Genetic 
analyses of familial nIHH cases have significantly advanced this understanding. In a study of 22 consecutive multiplex families with nIHH, 
mutations were identified in five genes—GNRHR, TACR3, TAC3, KISS1R, and KISS1—in 77% of families. Among these, GNRHR and 
TACR3 mutations were the most frequently observed, each accounting for approximately one-third of the genetically resolved cases (24).  
GNRHR and GNRH1 
GNRH1 and GNRHR are the most obvious candidate gene in the etiology of  IHH. In 1997, de Roux et al. identified compound heterozygous 
mutations in GNRHR in two siblings with partial nIHH, showing that Gln106Arg impaired GnRH binding while Arg262Gln reduced IP3 
signaling (102). The male sibling exhibited normal gonadotropin levels and LH pulse frequency but reduced pulse amplitude, consistent with 
partial GnRH receptor dysfunction. Shortly after, Layman et al. reported a family with four siblings carrying compound heterozygous 
GNRHR mutations (p.Arg262Gln and p.Tyr284Cys), further supporting the role of biallelic GNRHR mutations in IHH without anosmia or 
developmental anomalies (103). Subsequent studies found GNRHR variants in approximately 5–6% of nIHH cases (104). This relatively high 
prevalence of GNRHR was confirmed in subsequent studies (105). To date over 60 distinct mutations have since been reported (106). 
Genotype-phenotype correlations have been observed for specific GNRHR mutations. The genetic  makeup (homozygous, compound 
heterozygous, or monoallelic variants) broadly correlates with clinical severity, ranging from complete IHH to milder forms such as CDGP 
and  functional hypothalamic amenorrhea (104). The homozygous R139C missense mutation in the conserved DRS motif of the GnRH 
receptor causes complete IHH by severely impairing receptor trafficking to the plasma membrane, a defect reversible with the 
pharmacological chaperone IN3 (107). In contrast, the heterozygous Gln106Arg mutation is linked to adult-onset IHH (AOHH), where 
normal pubertal development precede nIHH. Homozygosity for p.Gln106Arg has also been associated with the fertile eunuch variant of 
nIHH, characterized by hypogonadism with preserved testicular size and partial virilization (108). These findings highlight how specific 
GNRHR mutations contribute to a broad spectrum of GnRH deficiency phenotypes (5, 106). 
GNRH1 encodes the gonadotropin-releasing hormone (GnRH) preprohormone. Deletion of Gnrh1 in murine models was shown to result in 
complete absence of GnRH synthesis, a finding reported well before analogous mutations were identified in humans (109, 110). Over a 
decade after the initial discovery of GNRHR mutations, pathogenic GNRH1 variants were reported in humans (111, 112). Bouligand et al 
demonstrated that pulsatile GnRH administration for two weeks resulted in synchronous LH pulses, increased levels of estradiol, and a single 
dominant ovarian follicle. These findings confirmed the hypothalamic origin and pivotal role of GnRH in human reproduction (111). 
Affected individuals frequently present with micropenis and cryptorchidism humans (111-113).  
KISS1R and KISS1 
In 2003, kisspeptin emerged as a pivotal central regulator of GnRH neuronal activity following the identification of mutations in a previously 
little-characterized G protein–coupled receptor, initially termed GPR54 and later renamed KISS1R (kisspeptin receptor) (106). In 2003, two 
independent research groups concurrently reported homozygosity mapping in familial cases of IHH, resulting in the first identification of 
pathogenic mutations in KISS1R (114, 115). Mutant KISS1R constructs exhibited impaired receptor function in in vitro assays, and Kiss1r-
knockout mice recapitulated the human hypogonadotropic phenotype, confirming the essential role of the kisspeptin signaling pathway in 
pubertal and reproductive regulation across mammals (114). In a mutational screening study, only five out of 166 (3%) probands with nIHH 
were found to have rare variants in KISS1R (116). The rarity of mutations in KISS1 and KISS1R may be attributed to evolutionary selection 
pressures, given the critical roles of kisspeptin in placentation, reproductive function, and metastasis suppression, which likely constrain the 
transmission of deleterious variants within populations (106). Studying a large, consanguineous family with four sisters with nIHH, we found 
inactivating mutations altering the 4th amino acid of Kisspeptin-10. Overnight frequent LH sampling did not reveal any LH pulsatility, further 

UNCORRECTED PROOF



5 

 

confirming the essential role of kisspeptin signaling in the GnRH pulse generator (117). Coutant et al. recently identified homozygous 
frameshift mutations in KISS1 within a consanguineous family (118). Molecular analyses confirmed a complete absence of kisspeptin 
protein. Affected male siblings exhibited congenital gonadotropin deficiency, including bilateral cryptorchidism, micropenis, and absent 
spontaneous puberty. However, the two older brothers later showed spontaneous reversal of hypogonadism, with normalization of testicular 
volume and spermatogenesis. These findings indicate that complete kisspeptin deficiency does not preclude delayed GnRH activation or 
pubertal maturation, underscoring the redundancy and adaptability of upstream neuroendocrine pathways (118). The potential involvement of 
alternative KISS1R ligands, neuroendocrine plasticity, or compensatory pathways—such as neurokinin B or glutamatergic signaling—
requires further investigation. 
TACR3 and TAC3 
Tachykinin receptor 3, encoded by TACR3, mediates the biological actions of neurokinin B (NKB), which is encoded by TAC3. Through 
autozygosity mapping aimed at discovering novel regulators of the HPG axis, we identified homozygous non-synonymous mutations in the 
coding regions of TAC3 or TACR3 in nine individuals from four families presenting with nIHH phenotype (119).  With the additional cases 
identified in our cohort, it became clear that TACR3 mutations are almost as common as GNRHR mutations (24, 120). Similar findings 
regarding the prevalence of TACR3 mutations have been reported by other research groups. Gianetti et al (121) found 19 among 345 (5.5%) 
cases while a very similar rate (5.2%) was observed by Francou et al from a cohort of 173 cases of familial and sporadic nIHH (122). The 
frequent occurrence of micropenis and cryptorchidism in male patients with TACR3 mutations suggests that functional TACR3 signaling is 
essential for normal fetal gonadotropin secretion, which in turn regulates testicular development, descent, and penile growth (4).  
Clinical reversibility, characterized by spontaneous pubertal progression—often following a period of exogenous sex steroid therapy—was 
observed in approximately 10% of an unselected cohort with nIHH (12). Gianetti et al. reported a significantly higher rate of reversibility—
83%—in their cohort of patients with TAC3/TACR3 mutations (121). In our cohort, four patients from three unrelated and ethnically diverse 
families exhibited clinical recovery, representing 25% (4/16) of the cases. Notably, all of these families carried the same TACR3 mutation 
(p.Thr177Lys). Given the relatively high rate of reversibility, it was hypothesized that CDGP might represent a mild form of IHH linked to 
TACR3 mutations. To investigate this, Vaaralahti et al. screened TAC3 and TACR3 in 146 Finnish individuals with CDGP but identified no 
pathogenic variants associated with the phenotype (123).  
Additional clinical studies have enhanced our understanding about the regulation of the HPG axis by Neurokinin B signaling. Young et al. 
showed that patients with null mutations in TAC3 could achieve pubertal levels of gonadotropins and sex steroids following repeated 
administration of exogenous GnRH. This finding indicates that neurokinin B acts at a hypothalamic level, upstream of GnRH secretion, 
rather than directly influencing pituitary function (124). Furthermore, a genome-wide association study identified a significant association 
between age at menarche, a surrogate marker of pubertal start, and a single nucleotide polymorphism (rs3733631) located immediately 
upstream of TACR3, supporting a role for neurokinin B signaling in the regulation of pubertal timing at the population level (125). 
IRF2BPL (EAP1)  
Pubertal onset is postulated to be regulated in part by transcriptional factors such as EAP1 (126). In a cohort with familial CDGP, two rare 
EAP1 variants (p.Ala221del and p.Asn770His) were identified, both impairing GnRH promoter activation through distinct molecular 
mechanisms. These findings provide the first link between EAP1 mutations and CDGP (127). 
LEP and LEPR 
Leptin deficiency with mutations in either LEP (encoding leptin) or LEPR (encoding the leptin receptor) is associated with IHH (128, 129). 
Administration of leptin in individuals with LEP deficiency restores normal pubertal development but does not induce precocious puberty in 
prepubertal children. This suggests that leptin functions as a permissive, rather than initiatory, factor in the onset of puberty in humans (130). 
These patients are readily distinguishable from other individuals with IHH due to the characteristic presentation of early-onset obesity and 
hyperphagia. 
NR0B1 (DAX1) 
NR0B1 belongs to the nuclear receptor superfamily and is classified as an orphan receptor due to the absence of a known endogenous ligand. 
Mutations in NR0B1 are known to cause adrenal hypoplasia congenita in combination with IHH (131, 132). Adrenal hypoplasia typically 
presents as adrenal insufficiency during infancy, whereas IHH becomes manifest in affected males who survive into the second decade of 
life. Nuclear receptors, such as SF-1 and LRH-1, involded in adrenal and gonadal phyiology and development, are regulated in their 
transcriptional activity by coregulatory molecules (136). DAX-1, lacks a DNA-binding domain and functions exclusively as a coregulator 
(137). Notably, Dax-1 is predominantly expressed in the arcuate nucleus of the hypothalamus. In adult female mice, Dax-1 is present in at 
least 70% of Kiss1 neurons within the ARC, which is associated with pubertal development, whereas it is found in fewer than 5% of Kiss1 
neurons in the AVPV nucleus, which is exclusively linked to the menstrual cycle (138). These findings suggest that Dax-1 is selectively 
involved in the regulation of pubertal onset and the sustained function of the HPG axis. As stated above mutations in NR0B1 result in adrenal 
hypoplasia congenita together with IHH (131, 132). Paradoxically, NR0B1 mutations can also result in the opposite phenotype—precocious 
puberty even within the same kindred (133-135). The genetic mechanisms underlying these divergent phenotypic outcomes remain poorly 
understood, highlighting intriguing genotype-phenotype correlations. This paradox suggests a complex, context-dependent role for DAX-1 in 
regulating the HPG axis and pubertal timing.  
SRA1 
SRA1 was the first gene demonstrated to exert its function through both its protein product and a noncoding, functional RNA transcript (139). 
These proteins serve as co-regulators for nuclear receptors, including sex steroid receptors, and play a critical role in modulating the activity 
of SF-1 and LRH-1, the principal regulators of steroid hormone biosynthesis. SRA1 is required for the synergistic enhancement of SF-1 
transcriptional activity by DAX-1 (NR0B1), mutations in which also cause IHH (140). We and others reported nIHH patients with 
inactivating SRA1 mutations (141-143). 
PNPLA6 
Gordon Holmes syndrome (GDHS) is characterized by cerebellar ataxia/atrophy and nIHH, while the related Boucher-Neuhäuser syndrome 
also includes chorioretinal dystrophy. PNPLA6, which encodes neuropathy target esterase (NTE), a key regulator of phospholipid 
metabolism, was found to carry loss-of-function mutations in six GDHS patients from three unrelated families via autozygosity mapping and 
whole-exome sequencing. Functional studies showed that NTE inhibition in LβT2 gonadotroph cells impairs LH exocytosis in response to 
GnRH. These findings suggest that NTE dysfunction in GDHS disrupts phospholipid homeostasis, contributing to both neurodegeneration 
and impaired LH secretion, resulting in nIHH (144). 
OTUD4 and RNF216 
Ubiquitination-related OTUD4 encodes a deubiquitinase, while RNF216 encodes a ubiquitin E3 ligase. OTUD4 and RNF216 mutations have 
been identified in patients with GDHS. Patients have progressive ataxia, dementia, and neuronal losses are observed in the cerebellar 
pathway and hippocampus. Functional studies have shown that knockout of otud4 and rnf216 in zebrafish causes defects in the eye and 
cerebellum and that suppression of the two genes together worsens these phenotypes. Hence, inactivating mutations in OTUD4 and RNF216 
cause neurodegeneration and reproductive failure through dysregulated ubiquitination (145). 
STUB1  
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STUB1 encodes C-terminus of HSC70-inactivating protein, which functions as a E3 ubiquitin ligase. Pathogenic variants of STUB1 have 
been associated with GDHS (146). 
POU6F2 
POU6F2 belongs to a gene family characterized by a bipartite DNA-binding domain, comprising a POU-specific domain and a POU 
homeodomain. Members of this family function as transcriptional regulators involved in cell type–specific differentiation. Several POU 
domain–containing proteins have been implicated in the regulation of GnRH neuron expression (147, 148). Using WES data from two 
independent IHH cohorts (331 nIHH, 85 KS; 416 patients in total and 677 nIHH, 632 KS; 1309 patients in total), 12 rare missense variants of 
POU6F2 were identified in 15 patients. Functional studies of two different isoforms encoded by POU6F2 were performed, and the function 
of isoform 1 was proven as a transcriptional regulator of GNRH1 expression. Thus, pathogenic POU2F6 variants were shown to be involved 
in IHH pathogenesis by disrupting normal GnRH migration (149).  
DLG2 
DLG2 encodes a scaffolding protein that interacts with N-methyl-D-aspartate (NMDA) receptors, which have been implicated in the 
regulation of sexual maturation in animal models. Whole-exome sequencing identified a rare missense variant in DLG2 in a large family with 
delayed puberty. Functional studies demonstrated that this variant reduces GnRH expression in vitro, suggesting a potential mechanistic link 
between DLG2 and pubertal timing (150). A subsequent study screened the WES data of 336 IHH probands from 290 independent families 
for rare DLG2 variants. A total of one homozygous and two heterozygous missense variants were identified in three independent normosmic 
patients (151). 
NHLH2 
NHLH2, a basic helix-loop-helix transcription factor family member, mediates leptin-induced activation of POMC in the leptin-melanocortin 
pathway. Screening of WES data in a large IHH cohort revealed obese patients with rare disease-causing sequence variants. In silico and in 
vitro analyses of the findings showed that NHLH2 binding to the Mc4r promoter and KISS1 transactivation were reduced supporting a 
critical role for NHLH2 in human puberty and body weight control (152). Remarkably, Nhlh2 knockout mice exhibit a phenotype closely 
resembling that of patients with rare inactivating NHLH2 variants, characterized by nIHH and late-onset obesity (153).  
CPE 
CPE encodes an enzyme responsible for processing neuropeptides, including GnRH, into their biologically active forms within the 
hypothalamus. Inactivating mutations in CPE result in a syndrome characterized by severe obesity, intellectual disability, disrupted glucose 
homeostasis, and IHH—a phenotype consistent with observations in Cpe knockout mouse models (154). A subsequent study detected a 
homozygous nonsense CPE mutation in three obese siblings with mental retardation and IHH (155). Comparison with previously reported 
cases led to the delineation of a distinct clinical entity termed Blakemore-Durmaz-Vasileiou (BDV) syndrome—an extremely rare autosomal 
recessive disorder characterized by a combination of impaired intellectual development, hyperphagia, and IHH (156). 
POLR3A and POLR3B 
RNA polymerase III regulates fundamental cellular processes through the transcription of small RNAs. Its catalytic core is composed of 
multiple subunits, including POLR3A and POLR3B. Pathogenic variants in these subunits have been associated with 4H syndrome (also 
known as POLR3-related leukodystrophy), a rare disorder characterized by hypomyelination, hypodontia, and IHH (157, 158). Mice studies 
have shown that missense mutations in Polr3a and Polr3b can variably disrupt development and Pol III function (159). It is still unclear how 
inactivating mutations in those genes cause IHH.  
Small GTPase related genes (RAB18, RAB3GAP1, RAB3GAP2, TBC1D20, and DMXL2) Mutations in several genes related to small 
GTPases—including RAB18, RAB3GAP1, RAB3GAP2, TBC1D20, and DMXL2—have been implicated in IHH, often in conjunction with 
neurodegenerative features. Small GTPases are critical regulators of intracellular trafficking, particularly in endocytosis and exocytosis. 
RAB18 is a member of the Ras-related GTPases that play a role in apical endocytosis/recycling between the plasma membrane and early 
endosomes(160). Mutations in RAB18 or in any of its essential regulators, RAB3GAP1, RAB3GAP2, and TBC1D20 (161-163), are associated 
with Warburg micro syndrome type 3 (164). Warburg micro and Martsolf syndromes are overlapping clinical entities characterized by IHH, 
progressive spasticity, severe developmental delay, microcephaly, cortical visual impairment, hypotonia, optic nerve atrophy. DMXL2 
encodes for rabconnectin-3a, which is a regulator of another intracellular GTPase, Rab3a. Rabconnectin-3a is expressed in exocytosis 
vesicles in GnRH axons in the median eminence of the hypothalamus (165). Furthermore, inactivating DMXL2 mutations cause a novel 
complex syndrome that features IHH and a neurodegenerative phenotype, including cerebellar ataxia and demyelinating polyneuropathy, 
among other clinical features (165).  
ARHGAP35 and ARHGAP5 
ARHGAP35 (Rho GTPase activating protein 35) and ARHGAP5 (Rho GTPase activating protein 5) are Rho GTPase activating protein genes. 
Rare PTVs in ARHGAP35 have been reported to result in IHH. Zebrafish modeling has shown that neuronal areas are reduced in mutant 
larvae lacking the ARHGAP35 paralog arhgap35a. No changes were observed in the ARHGAP5 paralog in functional studies, and it was 
identified as an IHH candidate. These observations suggest a novel role for the p190 RhoGAP proteins in GnRH neuronal development and 
integrity (166).  
FSHB 
FSHB encodes the beta subunit of follicle-stimulating hormone. A homozygous deletion of FSHB has been reported in a patient with nIHH, 
primary amenorrhea, and infertility due to isolated pituitary FSH deficiency (167). Studies have reported mutations in compound 
heterozygous, missense, and nonsense types (168, 169). Mouse studies show that Fshb-/- female mice are sterile and hypogonadal (170).  
LHB 
Luteinizing hormone (LH), encoded by LHB, is a glycoprotein hormone essential for the regulation of gonadal function. A homozygous 
mutation in LHB was first identified in a patient with nIHH caused by biologically inactive LH (171, 172). Subsequent studies have reported 
missense mutations, nonsense mutations, and small deletions in LHB associated with nIHH (173-175). In animal models, targeted disruption 
of Lhb in mice resulted in reduced testicular size and decreased testosterone levels in males, while females exhibited a hypogonadal 
phenotype (176).  
4. Scientific significance of identifying IHH-associated genes 
Undoubtedly, the most impactful contribution of IHH-associated gene studies has been the elucidation of the long-sought GnRH pulse 
generator, advancing our fundamental understanding of reproductive neuroendocrine regulation (177-180). A surge of research into 
kisspeptin and neurokinin B signaling—catalyzed by the discovery of inactivating mutations in familial cases of nIHH—has led to the 
characterization of the long-sought GnRH pulse generator. Current understanding centers on a population of sex steroid–responsive neurons 
within the arcuate (infundibular) nucleus that co-express Kisspeptin, NKB, Dynorphin, and estrogen receptor alpha (ERα), collectively 
termed KNDy neurons. Within this network, stimulatory signals from NKB initiate action potentials, which are subsequently attenuated by 
inhibitory dynorphin signaling. When dynorphin-mediated inhibition is overcome, a new cycle of NKB-induced excitation ensues, resulting 
in rhythmic, intermittent action potentials. Each burst drives pulsatile kisspeptin release onto GnRH neuron terminals in the median 
eminence, thereby triggering GnRH secretion into the portal circulation and ultimately stimulating pituitary gonadotropes. The 
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synchronization of KNDy neuronal activity is thought to be mediated by NKB-NK3R signaling via ipsilateral and contralateral projections 
within the KNDy network (178, 181, 182).  
5.Clinical significance of identifying IHH-associated genes 
IHH-associated gene studies may be translated into new therapeutic modalities. The first therapeutic oppurtunities linked to the identification 
of IHH genes stemmed from the discovery of TAC3 and TACR3 mutations in patients with nIHH (183). Antagonism of neurokinin B (NKB) 
signaling has been utilized in the development of pharmacological therapies targeting two of the most common reproductive health disorders 
in women globally: menopausal hot flushes and polycystic ovary syndrome (PCOS). 
In menopausal women, the decline in ovarian estrogen levels reduces negative feedback on KNDy neurons, causing them to become 
hypertrophied and to overproduce neurokinin B (NKB). KNDy neurons project to the TACR3-expressing median preoptic nucleus within the 
hypothalamus, a key region involved in thermosensory processing and heat-defense mechanisms (184, 185). Building on these observations, 
the Rance laboratory demonstrated that ablation of KNDy neurons in rats leads to a reduction in tail-skin temperature, indicating that NKB 
promote cutaneous vasodilation—a key physiological component of hot flushes (186). Following clinical trials, fezolinetant—a selective 
neurokinin-3 receptor (NK3R) antagonist—has been approved for the treatment of vasomotor symptoms in menopausal women since 2023 
(187, 188). 
NK3R antagonists have also potential for the treatment of PCOS. In premenopausal women, NK3R antagonism decreases the GnRH pulse 
frequency leading to reduced basal LH secretion, lower LH/FSH ratio, and the modulation of the temporal dynamics of ovarian sex hormone 
production over the menstrual cycle (189). The NK3R antagonist MLE4901 was demonstrated to reduce LH pulse frequency, as well as 
serum LH and testosterone levels, in women with PCOS (190). These hormonal findings were validated in a recent study involving 
fezolinetant; however, no significant improvement was observed in menstrual cycle regularity or clinical outcome scores (187). The 
investigators noted that the 12-week treatment duration in this trial may have been insufficient to elicit measurable changes, as favorable 
clinical outcomes in PCOS trials are typically observed after 6 to 9 months of therapy (187, 191). The use of an NK3R antagonist as a 
therapeutic agent for PCOS remains a promising strategy, given its potential to modulate the neuroendocrine dysregulation underlying the 
condition. 
6. Concluding remarks 
Currently, approximately half of the genes underlying IHH remain unidentified. The complexity of genotype–phenotype correlations in 
IHH—largely due to the established phenomena of oligogenic inheritance and spontaneous or treatment-induced clinical reversibility—poses 
significant challenges to gene discovery. Nevertheless, advances in next-generation sequencing technologies are expected to drive continued 
progress in uncovering the genetic basis of IHH. These investigations not only enhance our understanding of fundamental biological 
processes—such as the recent elucidation of the GnRH pulse generator—but also inform the development of targeted therapeutics, 
exemplified by the approval of fezolinetant, an Neurokinin B receptor antagonist, for the treatment of menopausal hot flushes. 
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Table 1. The list of genes associated with idiopathic hypogonadotropic hypogonadism. 
Gene HGNC 

ID 
Approved name OMIM Phenotype Phenotype 

MIM number 
AMH 464 anti-Mullerian hormone Persistent Mullerian duct 

syndrome, type I 
261550 

AMHR2 465 anti-Mullerian hormone 
receptor type 2 

Persistent Mullerian duct 
syndrome, type II 

261550 

ANOS1 6211 anosmin 1 Hypogonadotropic 
hypogonadism 1 with or without 
anosmia (Kallmann syndrome 1) 

308700 

ARHGAP5 675 Rho GTPase activating 
protein 5 

  

ARHGAP35 4591 Rho GTPase activating 
protein 35 

  

AXL 905 AXL receptor tyrosine 
kinase 

  

CCDC141 26821 coiled-coil domain 
containing 141 

  

CHD7 20626 chromodomain helicase 
DNA binding protein 7 

Hypogonadotropic 
hypogonadism 5 with or without 
anosmia 

612370 

CHARGE syndrome 214800 
CPE 2303 carboxypeptidase E BDV syndrome 619326 
DCC 2701 DCC netrin 1 receptor Colorectal cancer, somatic 114500 

Esophageal carcinoma, somatic 133239 
Gaze palsy, familial horizontal, 
with progressive scoliosis, 2 

617542 

Mirror movements 1 and/or 
agenesis of the corpus callosum 

157600 

DLG2 2901 discs large MAGUK 
scaffold protein 2 

  

DMXL2 2938 Dmx like 2 Deafness, autosomal dominant 
71* 

617605 

Polyendocrine-polyneuropathy 
syndrome* 

616113 

Developmental and epileptic 
encephalopathy 81 

618663 

DUSP6 3072 dual specificity 
phosphatase 6 

Hypogonadotropic 
hypogonadism 19 with or 
without anosmia 

615269 

FEZF1 22788 FEZ family zinc finger 1 Hypogonadotropic 
hypogonadism 22, with or 
without anosmia 

616030 

FGF8 3686 fibroblast growth factor 8 Hypogonadotropic 
hypogonadism 6 with or without 
anosmia 

612702 

FGF17 3673 fibroblast growth factor 
17 

Hypogonadotropic 
hypogonadism 20 with or 
without anosmia 

615270 

FGFR1 3688 fibroblast growth factor 
receptor 1 

Hypogonadotropic 
hypogonadism 2 with or without 
anosmia 

147950 

Encephalocraniocutaneous 
lipomatosis, somatic mosaic 

613001 

Hartsfield syndrome 615465 
Jackson-Weiss syndrome 123150 
Osteoglophonic dysplasia 166250 
Pfeiffer syndrome 101600 
Trigonocephaly 1 190440 

FLRT3 3762 fibronectin leucine rich 
transmembrane protein 3 

Hypogonadotropic 
hypogonadism 21 with anosmia 

615271 

FSHB 3964 follicle stimulating 
hormone subunit beta 

Hypogonadotropic 
hypogonadism 24 without 
anosmia 

229070 

GNRH1 4419 gonadotropin releasing 
hormone 1 

Hypogonadotropic 
hypogonadism 12 with or 
without anosmia* 

614841 

GNRHR 4421 gonadotropin releasing 
hormone receptor 

Hypogonadotropic 
hypogonadism 7 without 
anosmia 

146110 

HESX1 4877 HESX homeobox 1 Growth hormone deficiency with 
pituitary anomalies 

182230 
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Pituitary hormone deficiency, 
combined, 5 

182230 

Septooptic dysplasia 182230 
HS6ST1 5201 heparan sulfate 6-O-

sulfotransferase 1 
Hypogonadotropic 
hypogonadism 15 with or 
without anosmia 

614880 

IGSF10 26384 immunoglobulin 
superfamily member 10 

  

IL17RD 17616 interleukin 17 receptor D Hypogonadotropic 
hypogonadism 18 with or 
without anosmia 

615267 

IRF2BPL 14282 interferon regulatory 
factor 2 binding protein 
like 

Neurodevelopmental disorder 
with regression, abnormal 
movements, loss of speech, and 
seizures 

618088 

KISS1 6341 KiSS-1 metastasis 
suppressor 

Hypogonadotropic 
hypogonadism 13 with or 
without anosmia* 

614842 

KISS1R 4510 KISS1 receptor Hypogonadotropic 
hypogonadism 8 with or without 
anosmia 

614837 

   Precocious puberty, central, 1* 176400 
KLB 15527 klotho beta   
LEP 6553 leptin Obesity, morbid, due to leptin 

deficiency 
614962 

LEPR 6554 leptin receptor Obesity, morbid, due to leptin 
receptor deficiency 

614963 

LHB 6584 luteinizing hormone 
subunit beta 

Hypogonadotropic 
hypogonadism 23 with or 
without anosmia 

228300 

NDNF 26256 neuron derived 
neurotrophic factor 

Hypogonadotropic 
hypogonadism 25 with anosmia 

618841 

NHLH2 7818 nescient helix-loop-helix 
2 

Hypogonadotropic 
hypogonadism 27 without 
anosmia* 

619755 

NR0B1 7960 nuclear receptor 
subfamily 0 group B 
member 1 

46XY sex reversal 2, dosage-
sensitive 

300018 

Adrenal hypoplasia, congenital 300200 
NSMF  

 
29843 

NMDA receptor 
synaptonuclear signaling 
and neuronal migration 
factor 

Hypogonadotropic 
hypogonadism 9 with or without 
anosmia 

614838 

NTN1 8029 netrin 1 Mirror movements 4 618264 
OTUD4 24949 OTU deubiquitinase 4   
PCSK1 8743 proprotein convertase 

subtilisin/kexin type 1 
Obesity, susceptibility to, 
BMIQ12 

612362 

Endocrinopathy due to 
proprotein convertase 1/3 
deficiency 

600955 

PLXNA1 9099 plexin A1 Dworschak-Punetha 
neurodevelopmental syndrome 

619955 

PLXNA3 9101 plexin A3   
PLXNB1 9103 plexin B1   
PNPLA6 16268 patatin like domain 6, 

lysophospholipase 
Laurence-Moon syndrome* 245800 
Boucher-Neuhauser syndrome 215470 
Oliver-McFarlane syndrome 275400 
Spastic paraplegia 39, autosomal 
recessive 

612020 

POLR3A 30074 RNA polymerase III 
subunit A 

Leukodystrophy, 
hypomyelinating, 7, with or 
without oligodontia and/or 
hypogonadotropic 
hypogonadism 

607694 

Wiedemann-Rautenstrauch 
syndrome 

264090 

POLR3B 30348 RNA polymerase III 
subunit B 

Charcot-Marie-Tooth disease, 
demyelinating, type 1I 

619742 

Leukodystrophy, 
hypomyelinating, 8, with or 
without oligodontia and/or 
hypogonadotropic 
hypogonadism 

614381 
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POU6F2 21694 POU class 6 homeobox 2 Wilms tumor susceptibility-5 601583 
PROK2 18455 prokineticin 2 Hypogonadotropic 

hypogonadism 4 with or without 
anosmia 

610628 

PROKR2 15836 prokineticin receptor 2 Hypogonadotropic 
hypogonadism 3 with or without 
anosmia 

244200 

RAB18 14244 RAB18, member RAS 
oncogene family 

Warburg micro syndrome 3 614222 

RAB3GAP1  
17063 

RAB3 GTPase activating 
protein catalytic subunit 1 

Martsolf syndrome 2 619420 
Warburg micro syndrome 1 600118 

RAB3GAP2 17168 RAB3 GTPase activating 
non-catalytic protein 
subunit 2 

Martsolf syndrome 1 212720 
Warburg micro syndrome 2 614225 

RNF216 21698 ring finger protein 216 Cerebellar ataxia and 
hypogonadotropic 
hypogonadism 

212840 

SEMA3A 10723 semaphorin 3A Hypogonadotropic 
hypogonadism 16 with or 
without anosmia 

614897 

SEMA3E 10727 semaphorin 3E   
SEMA3F 10728 semaphorin 3F   
SMCHD1 29090 structural maintenance of 

chromosomes flexible 
hinge domain containing 
1 

Bosma arhinia microphthalmia 
syndrome 

603457 

Facioscapulohumeral muscular 
dystrophy 2, digenic 

158901 

SOX2 11195 SRY-box transcription 
factor 2 

Microphthalmia, syndromic 3 206900 
Optic nerve hypoplasia and 
abnormalities of the central 
nervous system 

206900 

SOX3 11199 SRY-box transcription 
factor 3 

Intellectual developmental 
disorder, X-linked, with isolated 
growth hormone deficiency 

300123 

Panhypopituitarism, X-linked 312000 
SOX10 11190 SRY-box transcription 

factor 10 
PCWH syndrome 609136 
Waardenburg syndrome, type 
2E, with or without neurologic 
involvement 

611584 

Waardenburg syndrome, type 4C 613266 
SOX11 11191 SRY-box transcription 

factor 11 
Intellectual developmental 
disorder with microcephaly and 
with or without ocular 
malformations or 
hypogonadotropic 
hypogonadism 

615866 

SPRY4 15533 sprouty RTK signaling 
antagonist 4 

Hypogonadotropic 
hypogonadism 17 with or 
without anosmia 

615266 

SRA1 11281 steroid receptor RNA 
activator 1 

  

STUB1 11427 STIP1 homology and U-
box containing protein 1 

Spinocerebellar ataxia 48 618093 
Spinocerebellar ataxia, 
autosomal recessive 16 

615768 

TCF12 11623 transcription factor 12 Hypogonadotropic 
hypogonadism 26 with or 
without anosmia 

619718 

Craniosynostosis 3 615314 
TAC3 11521 tachykinin precursor 3 Hypogonadotropic 

hypogonadism 10 with or 
without anosmia 

614839 

TACR3 11528 tachykinin receptor 3 Hypogonadotropic 
hypogonadism 11 with or 
without anosmia 

614840 

TBC1D20 16133 TBC1 domain family 
member 20 

Warburg micro syndrome 4 615663 

WDR11 13831 WD repeat domain 11 Hypogonadotropic 
hypogonadism 14 with or 
without anosmia, 
 

614858 

Intellectual developmental 
disorder, autosomal recessive 78 

620237 
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