DOI: 10.4274/jcrpe.galenos.2025.2025-6-5

Case Report

18p Deletion Syndrome Associated with Type 1 Diabetes and Hashimoto's Thyroiditis: A Case Report on Autoimmune Disorders and Genetic Factors

Oktay MA et al. 18p Deletion Syndrome with Autoimmune Endocrinopathy

Mehmet Ali Oktay¹, Elif Tuğçe Tunca Küçükali¹, Aylın Kılınç Uğurlu¹, Esra Döğer¹, Gülsüm Kayhan², Mahmut Orhun Çamurdan¹, Aysun Bideci¹

¹Gazi University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Türkiye

Presented in: This case was previously presented as a poster at the European Society for Paediatric Endocrinology – European Society of Endocrinology (ESPE-ESE) 2025 Congress (Copenhagen, Denmark; 10 - 13 May 2025).

What is already known on this topic?

18p deletion syndrome is a	rare chromosomal disorder characterized by highly variable phenotypic features, including intellectual
disability, craniofacial dysmorphism,	and systemic involvement.
	ne diseases, particularly autoimmune thyroiditis, have been reported in patients with 18p deletions, the
mechanisms linking the chromosomal	deletion to immune dysregulation are poorly understood.
Only a few cases in the lite	rature have described a co-occurrence of 18p deletion syndrome with type 1 diabetes mellitus (T1DM).
What this study adds?	
This case report presents a	rare co-occurrence of early-onset T1DM and Hashimoto's thyroiditis in a child with 18p deletion
syndrome.	
	letion of multiple immunoregulatory genes (e.g., PTPN2, PTPRM, LPIN2, USP14, ADCYAP1) and
discusses their possible contribution t	autoimmune disease pathogenesis in the context of chromosomal deletion.
The findings emphasize th	e importance of long-term endocrine and immunological surveillance in individuals with 18p deletion
syndrome, especially in dysmorphic f	eatures and systemic involvement

Abstract

18p deletion syndrome is a rare chromosomal disorder that can present with a wide range of phenotypic features and is occasionally associated with autoimmune diseases. We report the case of a 3-year and 8-month-old girl who presented with polydipsia and polyuria and was subsequently diagnosed with type 1 diabetes mellitus (T1DM) based on clinical and laboratory findings. The patient exhibited dysmorphic facial features and developmental delay, leading to genetic testing, which revealed a 13.7 Mb deletion on the short arm of chromosome 18 (18p11.32p11.21). Over the following years, she developed additional features, including Hashimoto's thyroiditis, epilepsy, subaortic stenosis requiring surgical resection, IgA deficiency, bilateral sensorineural hearing loss, and myopia. Genetic analysis also identified the deletion of several potentially disease-modifying genes including PTPN2, PTPRM, LPIN2, USP14, and ADCYAP1. This case highlights the potential role of genes within the 18p region in the pathogenesis of autoimmune endocrinopathies. It supports further investigation into the immunogenetic mechanisms in 18p deletion syndrome.

Keywords: 18p deletion syndrome, Type 1 diabetes mellitus, Hashimoto's thyroiditis, Autoimmunity

Mehmet Ali Oktay, MD, Gazi University Faculty of Medicine, Department of Pediatric Endocrinology, Ankara, Türkiye malii-71@hotmail.com - mehmetali.oktay@gazi.edu.tr 0000-0002-7116-5828

05.06.2025 25.10.2025

Epub: 06.11.2025

Introduction

18p (eletion syndrome (monosomy 18p), first described by Jean de Grouchy in 1963, is a rare chromosomal anomaly resulting from the partial or complete loss of genetic material on the short arm of chromosome 18 (1). The syndrome has an estimated incidence of approximately 1 in 50,000 live births. It presents with a variable phenotypic spectrum, including mild to moderate intellectual disability, short stature, marked speech delay, and craniofacial dysmorphism (2–4). While most cases result from de novo terminal deletions, some may arise from familial translocations or ring chromosome structures (5). The diversity of breakpoint regions contributes to the wide clinical variability observed, leading to differences in growth, cognitive function, and involvement of multiple systems, particularly craniofacial and skeletal development (4).

18p deletion syndrome is also a rare chromosomal disorder associated with several autoimmune diseases (4). Individuals with this syndrome may be predisposed to autoimmune thyroid diseases, rheumatoid arthritis, celiac disease, and alopecia (4,6). However, the genetic mechanisms underlying autoimmunity and the complex pathophysiology of 18p deletion syndrome remain poorly understood (6). In this report, we present the case of a patient with 18p deletion who was diagnosed with early-onset type 1 diabetes mellitus (T1DM), Hashimoto's thyroiditis, and selective IgA deficiency.

Case Presentation

A 3-year and 8-month-old girl was admitted to our center with complaints of excessive water intake (polydipsia) and frequent urination (polyuria). On physical examination, dysmorphic features were noted, including a round face, broad nasal bridge, long philtrum, anteverted ears, hypertelorism, and a short neck. Cardiovascular evaluation revealed a grade 3/6 systolic murmur. Neurodevelopmental assessment indicated mild intellectual disability.

²Gazi University Faculty of Medicine, Department of Genetics, Ankara, Türkiye

Laboratory investigations revealed a blood glucose level of 339 mg/dL, insulin 11.43 mU/L, C-peptide 1.26 ng/mL, HbA1c 9.4%, and ketone level 1.2 mmol/L. Among autoimmune diabetes markers, anti-glutamic acid decarboxylase (anti-GAD) antibodies were elevated at 835.68 IU/mL (reference: 0–10), and anti-insulin antibodies were positive at 21.9% (reference: 0–8.2), while anti-islet cell antibodies were negative. Thyroid function tests were within normal limits, and thyroid and celiac autoantibodies were negative. Based on these findings, a diagnosis of type 1 diabetes mellitus (T1DM) was established, and insulin therapy was initiated.

Further investigations due to the presence of dysmorphic facial features revealed bilateral sensorineural hearing loss, myopia, and selective IgA deficiency. Subaortic stenosis was detected on echocardiography, and discrete subaortic membrane (DSM) resection was performed. During follow-up, the patient developed epilepsy two years after the initial T1DM diagnosis, and antiepileptic treatment was initiated. Cranial magnetic resonance imaging (MRI) findings were reported as usual. In light of the multisystemic and dysmorphic features, chromosomal microarray analysis (array-CGH) was performed, which identified a 13.7 Mb deletion involving most of the short arm of chromosome 18 (arr[hg19]18p11.32p11.21(148963-13875138)x1) (Figure 1).

Five years after the T1DM diagnosis, the patient presented again with fatigue and cold intolerance. Laboratory tests revealed elevated anti-thyroid peroxidase (anti-TPO) antibodies at 1006 IU/mL (reference: 0–34) and anti-thyroglobulin (anti-TG) antibodies at 200 IU/mL (reference: 0–115), leading to a diagnosis of Hashimoto's thyroiditis. Levothyroxine (LT4) therapy was initiated. The patient has been followed for ten years with comorbid T1DM and Hashimoto's thyroiditis.

Genetic Analysis and Results

Chromosomal microarray analysis was performed using the GenetiSure Cyto CGH Microarray Kit, 8 X 60K (Agilent Technologies, Santa, Clara, USA). The average resolution of the platform was 100 kb. The analysis identified a heterozygous 13.7 Mb deletion in the 18p11.32–p11.21 region (hg19: chr18:148 963–13 875 138). High-resolution (550-band) G-banded karyotyping confirmed the finding as 46,XX,del(18)(p11.2). Parental karyotypes were normal, indicating that the deletion arose de novo. The deleted interval encompasses 69 protein-coding genes, including immune-endocrine regulatory genes *PTPN2*, *PTPRM*, *LPIN2*, *USP14*, and *ADCYAP1*, as well as structural genes such as *LAMA1* (Table 1).

Discussion

18p deletion syndrome is a rare genetic condition encompassing a broad spectrum of clinical manifestations (7). Symptoms can range from mild features to severe brain malformations (7). The clinical presentation is typically associated with the size of the deletion and the loss of critical genes within the affected region (3). Typical findings include short stature, facial dysmorphism, intellectual disability, skeletal deformities (kyphoscoliosis, pectus excavatum), and ophthalmologic abnormalities (strabismus, ptosis, hypermetropia) (8). Additionally, muscle hypotonia, extensive dental caries, and, less frequently, cardiac anomalies and movement disorders may be observed (4, 9). Among the neurological complications, seizures are particularly notable and may occur with or without structural brain abnormalities (10, 11). Autoimmune diseases in individuals with 18p deletion syndrome have been associated with various clinical entities, including Graves' disease (6), Hashimoto's thyroiditis (12), juvenile idiopathic arthritis (13), and celinc disease (4). Furthermore, early-onset autoimmune thyroid diseases, as well as vitiligo, lupus, psoriasis, and alopecia, have been reported (4, 12). In our case, both T1DM and Hashimoto's thyroiditis were identified. According to the literature available, only one other case has been reported showing a co-occurrence of T1DM and 18p deletion (10).

The *PTPN2* gene, located on chromosome 18p, is one of the key candidates potentially involved in the development of autoimmune diseases. This gene has been associated with autoimmune conditions such as T1DM and rheumatoid arthritis (14, 15). Rheumatoid arthritis cases have been reported in individuals with 18p deletions encompassing the *PTPN2* gene (16, 17). However, one study also reported rheumatoid arthritis in an individual whose deletion did not include *PTPN2*. This sugges is that other critical regulatory regions may exist within the deletion interval or that autoimmune disease may arise from the disruption of regulatory elements affecting *PTPN2* (4). Thus, deletion of *PTPN2* is proposed as a potential mechanism contributing to the development of autoimmune diseases such as T1DM and Hashimoto's thyroiditis.

The *PTPRM* gene, located within the deleted region, encodes a receptor-type tyrosine phosphatase that negatively regulates STAT3, a key modulator of immune function (18). Deletion of *PTPRM* may lead to increased STAT3 phosphorylation, precipitating immune dysregulation and, via expansion of Th17 cell populations, heightening susceptibility to autoimmune processes (6,19). This pathway is thought to drive the pathogenesis of immune-mediated disorders such as T1DM and Hashimoto's thyroiditis, conditions characterized by immune system hyperactivity (20).

From a clinical standpoint, we recommend that children with an 18p deletion and confirmed *PTPRM* hemizygosity undergo early screening for autoantibodies (anti-GAD, anti-TPO, anti-TG), fasting/post-prandial glycaemic monitoring, and thyroid-function testing at 6- to 12-month intervals. In addition, symptom-based screening for other organ-specific autoimmune diseases linked to Th17-mediated inflammation such as coeliac disease and juvenile diopathic arthritis represents a practical and valuable approach.

The LAMA1 gene, located within the deleted region, encodes a protein critical for basement membrane assembly and is expressed in tissues such as the kidney, testis, and retina. Animal studies have demonstrated that mutations in this gene can lead to retinal vasculopathy and vascular anomalies (21). Poretti-Boltshauser syndrome, associated with LAMA1 dysfunction, cerebellar anomalies, and retinal dystrophies, has been described (22). Although the neurological and ophthalmologic effects of LAMA1 may not directly impair pancreatic beta cell function, they exacerbate endothelial injury in the pancreatic microvasculature, leading to β -cell ischemia and dysfunction and ultimately triggering the development of diabetes.

The *USP14* gene encodes a ubiquitin-specific protease that is critical for protein degradation, synaptic regulation, and endoplasmic-reticulum (ER) quality control. In mouse models, *USP14* deficiency causes neurological dysfunction and abnormal synaptic transmission (23), and in humans biallelic routations are linked to distal arthrogryposis, corpus callosum anomalies, and facial dysmorphism (24). Moreover, during LR stress *USP14* safeguards protein quality; its dysfunction can precipitate β-cell apoptosis and impair insulin secretion (25,26). Together, these observations position *USP14* as a compelling candidate for further investigation in both neurodevelopmental and metabolic phenotypes.

In our case, chromosomal microarray analysis identified a deletion spanning the *ADCYAP1* and *LPIN2* genes. *ADCYAP1* is believed to confer protection against cytokine-induced beta-cell apoptosis, thereby potentially attenuating the pathogenesis of diabetes (27). *LPIN2* deficiency, in addition to disrupting lipid metabolism and energy homeostasis, impairs the regulation of inflammatory responses; this dysfunction heightens pro-inflammatory cytokine expression and promotes excessive immune activation, indirectly contributing to the development of T1DM (28-30).

When a paediatric patient presents with two or more autoimmune endocrinopathies (e.g., T1DM accompanied by autoimmune thyroiditis) particularly in the setting of facial dysmorphism, developmental delay, sensory deficits, or congenital cardiac defects chromosomal abnormalities must be considered in the differential diagnosis.

Conclusion

18p deletion syndrome remains an important study area due to its genetic heterogeneity and phenotypic complexity. This case contributes to a better understanding of the genetic underpinnings of autoimmune conditions such as T1DM and Hashimoto's thyroiditis. Further molecular and genetic studies are needed to elucidate the roles of genes such as PTPN2, PTPRM, LPIN2, USP14, and ADCYAP1 in the pathogenesis of this syndrome.

Ethics

Informed Consent: An informed consent form was obtained from the patient's parents.

Acknowledgments

The authors thank the patient and her family for their consent to publication.

Authorship Contributions

Surgical and Medical Practices: Mehmet Ali Oktay, Aylin Kılınç Uğurlu, Gülsüm Kayhan, Mahmut Orhun Çamurdan, Aysun Bideci Concept: Mehmet Ali Oktay, Aylin Kılınç Uğurlu, Aysun Bideci

Design: Mehmet Ali Oktay, Elif Tuğçe Tunca Küçükali

Data Collection or Processing: Elif Tuğçe Tunca Küçükali, Aylın Kılınç Uğurlu, Esra Döğer, Gülsüm Kaylan

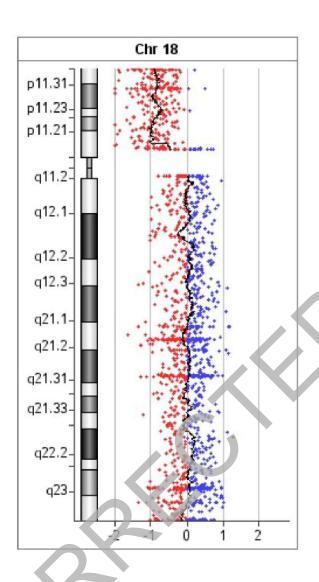
Analysis or Interpretation: Mehmet Ali Oktay, Mahmut Orhun Çamurdan, Aysun Bideci

Literature Search: Mehmet Ali Oktay, Elif Tuğçe Tunca Küçükali, Aylın Kılınç Uğurlu

Writing: Mehmet Ali Oktay, Elif Tuğçe Tunca Küçükali, Aylın Kılınç Uğurlu, Esra Döğer, Gülsüm Kayhan, Mahmut Orhun Çamurdan, Aysun Bideci

Conflict of Interest: None declared.

Financial Disclosure: The authors declared that this study received no financial support.


References

- 1. GROUCHY D. Dysmorphie complexe avec oligophrenie. Deletion des bras courts d'un chromosome 17-18. CR Acad Sci Paris. 1963;256:1028-9.
- 2. Turleau C. Monosomy 18p. Orphanet Journal of Rare Diseases. 2008;3:1-5.
- 3. Jin Q, Qiang R, Cai B, Wang X, Cai N, Zhen S, et al. The genotype and phenotype of chromosome 18p deletion syndrome: Case series. Medicine. 2021;100(18):e25777.
- 4. Hasi-Zogaj M, Sebold C, Heard P, Carter E, Soileau B, Hill A, et al., editors. A review of 18p deletions American Journal of Medical Genetics Part C: Seminars in Medical Genetics; 2015: Wiley Online Library.
- 5. Chen C-P, Kuo Y-T, Lin S-P, Su Y-N, Chen Y-J, Hsueh R-Y, et al. Mosaic ring chromosome 18 ring chromosome 18 duplication/deletion and disomy 18: perinatal findings and molecular cytogenetic characterization by fluorescence in situ hybridization and array comparative genomic hybridization. Taiwanese Journal of Obstetrics and Gynecology. 2010;49(3):327-32.
- 6. Herlin MK, Bernth Jensen JM, Andreasen L, Petersen MS, Lønskov J, Thorup MB, et al. Monozygotic triplets with juvenile-onset autoimmunity and 18p microdeletion involving PTPRM. Frontiers in Genetics. 2024;15:1437566.
- 7. Brenk CH, Prott E-C, Trost D, Hoischen A, Walldorf C, Radlwimmer B, et al. Towards mapping phenotypical traits in 18p-syndrome by array-based comparative genomic hybridisation and fluorescent in situ hybridisation. European journal of human genetics. 2007;15(1):35-44.
- 8. Wester U, Bondeson ML, Edeby C, Annerén G. Clinical and molecular characterization of individuals with 18p deletion: a genotype–phenotype correlation. American Journal of Medical Genetics Part A 2006;140(11):1164-71.
- 9. Goyal M, Jain M, Singhal S, Nandimath K. 18p deletion syndrome: Case report with clinical consideration and management. Contemporary clinical dentistry. 2017;8(4):632-6.
- 10. Renard D, Taieb G, Garibaldi M, Maues De Paula A, Bernard R, Lagha N, et al. Inflammatory facioscapulohumeral muscular dystrophy type 2 in 18p deletion syndrome. American Journal of Medical Genetics Part A. 2018;176(8):1760-3.
- 11. Crosiers D, Blaumeiser B, Van Goethem G. Spectrum of movement disorders in 18p deletion syndrome. Movement disorders clinical practice. 2019;6(1):70-3.
- 12. McGoey RR, Gedalia A, Marble M. Monosomy 18p and immunologic dysfunction: review of the literature and a new case report with thyroiditis, IgA deficiency, and systemic lupus erythema osus. C inical Dysmorphology. 2011;20(2):127-30.
- 13. Yatabe R, Hamada R, Akamine K. Polyarticular juvenile idiopathic arthritis with Madelung deformity and arthritis mutilans in 18p deletion syndrome. Rheumatology. 2024:keae605
- 14. Todd JA, Walker NM, Cooper JD, Smyth DJ, Downes K, Plagnol V, et al. Robust associations of four new chromosome regions from genome-wide analyses of type 1 diabetes. Nature genetics. 2007;39(7):857-64.

 15. Okada Y, Terao C, Ikari K Kochi Y, Ohmura K, Suzuki A, et al. Meta-analysis identifies nine new loci associated with
- 15. Okada Y, Terao C, Ikari K, Kochi Y, Ohmura K, Suzuki A, et al. Meta-analysis identifies nine new loci associated with rheumatoid arthritis in the Japanese population. Nature genetics. 2012;44(5):511-6.
- 16. Czakó M, Riegel M, Morava É, Schinzel A, Kosztolányi G. Patient with rheumatoid arthritis and MCA/MR syndrome due to unbalanced der (18) transmission of a paternal translocation t (18; 20)(p11. 1; p11. 1). American journal of medical genetics. 2002;108(3):226-8.
- 17. Finley SC, Finley W, Johnson J, Dodson W, McPhee H. Rheumatoid arthritis in the 46, XX, 18p-syndrome. Clinical Genetics. 1972;3(6):465-9.
- 18. Song J, Zhao D, Sun G, Yang J, Lv Z, Jiao B. PTPRM methylation induced by FN1 promotes the development of glioblastoma by activating STAT3 signalling. Pharmaceutical Biology. 2021;59(1):902-9.
- 19. Yasuda K, Takeu hi Y, Hirota K, editors. The pathogenicity of Th17 cells in autoimmune diseases. Seminars in immunopathology; 2019: Springer.
- 20. Flanagan SE, Haapaniemi E, Russell MA, Caswell R, Allen HL, De Franco E, et al. Activating germline mutations in STAT3 cause early-onset multi-organ autoimmune disease. Nature genetics. 2014;46(8):812-4.
- Edwards MM, McLeod DS, Grebe R, Heng C, Lefebvre O, Lutty GA. Lama1 mutations lead to vitreoretinal blood vessel formation, persistence of fetal vasculature, and epiretinal membrane formation in mice. BMC developmental biology. 2011;11:1-19.
- 22. Aldinger KA, Mosca SJ, Tétreault M, Dempsey JC, Ishak GE, Hartley T, et al. Mutations in LAMA1 cause cerebellar dysplasia and cysts with and without retinal dystrophy. The American Journal of Human Genetics. 2014;95(2):227-34.
- 23. Wilson SM, Bhattacharyya B, Rachel RA, Coppola V, Tessarollo L, Householder DB, et al. Synaptic defects in ataxia mice result from a mutation in Usp14, encoding a ubiquitin-specific protease. Nature genetics. 2002;32(3):420-5.
- 24. Turgut GT, Altunoglu U, Sivrikoz TS, Toksoy G, Kalaycı T, Avcı Ş, et al. Functional loss of ubiquitin-specific protease 14 may lead to a novel distal arthrogryposis phenotype. Clinical genetics. 2022;101(4):421-8.
- 25. Nagai A, Kadowaki H, Maruyama T, Takeda K, Nishitoh H, Ichijo H. USP14 inhibits ER-associated degradation via interaction with IRE1 α . Biochemical and biophysical research communications. 2009;379(4):995-1000.
- 26. Engin F. ER stress and development of type 1 diabetes. Journal of Investigative Medicine. 2016;64(1):2-6.
- 27. Han B, Wu J. DcR3 protects islet β cells from apoptosis through modulating Adcyap1 and bank1 expression. The Journal of Immunology. 2009;183(12):8157-66.
- 28. Ferguson P, Chen S, Tayeh M, Ochoa L, Leal S, Pelet A, et al. Homozygous mutations in LPIN2 are responsible for the syndrome of chronic recurrent multifocal osteomyelitis and congenital dyserythropoietic anaemia (Majeed syndrome). Journal of medical genetics. 2005;42(7):551-7.

- 29. Martorana D, Bonatti F, Mozzoni P, Vaglio A, Percesepe A. Monogenic autoinflammatory diseases with mendelian inheritance: genes, mutations, and genotype/phenotype correlations. Frontiers in immunology. 2017;8:344.
 30. Naviaux RK. Metabolic features of the cell danger response. Mitochondrion. 2014;16:7-17.

Table 1. Protein-coding genes located within the 18p11.32–p11.21 deletion detected in the patient									
ADCYAP1*	AFG3L2	AKAINI	ANKRD12	ANKRD62	APCDD1	ARHGAP28	C18orf15		
C18orf61	CBX3P2	CEP192	CEP76	CETN1	CHMP1B	CHORDC1P4	CIDEA		
CLUL1	COLEC12	DLGAP1	EMILIN2	ENOSF1	EPB41L3	FAM210A	GACAT2		
GAPLINC	GNAL	IMPA2	L3MBTL4	LAMA1*	LDLRAD4	LOC101927410	LPIN2*		
LRRC30	MC5R	METTL4	MPPE1	MTCL1	MYL12A	MYL12B	MYOMI		
NAPG	NDC80	NDUFV2	PIEZO2	PPP4R1	PRELID3A	PSMG2	PTPN2*		
PTPRM*	RAB12	RAB31	RALBP1	RNMT	SEH1L	SLC35G4	SMCHD1		
SPIRE1	TGIF1	THOC1	TMEM200C	TUBB6	TWSG1	TXNDC2	TYMS		
TYMSOS	USP14*	VAPA	YES1	ZBTB14					
*Immune/endocrine-related genes are shown in bold									

Figure 1. The deleted region located on the short arm of chromosome 18 (18p11.31–p11.21)